
On Learning the Width of Neural Networks
Federico Errica1, Henrik Christiansen2, Viktor Zaverkin2, Mathias Niepert2, Francesco Alesiani2

1. NEC Italia, 2. NEC Laboratories Europe
name.surname@neclab.eu

Abstract—We introduce an easy-to-use technique to learn an
unbounded width of a neural network’s layer during training.
The technique does not rely on alternate optimization nor hand-
crafted gradient heuristics; rather, it jointly optimizes the width
and the parameters of each layer via simple backpropagation. We
apply the technique to a broad range of data domains such as
tables, images, texts, and graphs, showing how the width adapts
to the task’s difficulty. By imposing a soft ordering of importance
among neurons, it is also possible to dynamically compress the
network with no performance degradation.

Index Terms—Neural Networks, Learning the Number of
Neurons, Adaptive Width Learning, Dynamic Architectures,
Information Compression, Variational Inference

I. INTRODUCTION

Since the construction of the Mark I Perceptron machine
the effective training of neural networks has remained an
open research problem of great academic and practical value.
The Mark I solved image recognition tasks by exploiting a
layer of 512 fixed “association units” that in modern language
correspond to the hidden units of a (possibly) Multi-Layer
Perceptron (MLP). MLPs possess universal approximation
capabilities when assuming arbitrary width [1] and sigmoidal
activations, and their convergence to good solutions was studied,
for instance, in [2] where the backpropagation algorithm was
described as “simple, easy to implement on parallel hardware”,
and improvable by other techniques such as momentum that
preserve locality of weight updates.

Yet, after almost 70 years of progress, the vast majority of
neural networks, be they shallow or deep, still rely on a fixed
choice of the number of neurons in their hidden layers. This
property is typically treated as an architectural design choice,
one of the many hyper-parameters that have to be carefully
tuned whenever we approach a new task. The tuning process has
many names, such as model selection, hyper-parameter tuning,
and cross-validation, and it is associated with non-negligible
costs: Different architectural configurations are to be trained
until one that performs best on a validation set is selected. The
configurations’ space grows exponentially in the number of
layers, so practitioners often resort to shortcuts such as picking
a specific number of hidden units for all layers, which greatly
reduces the search space together with the chances of selecting
a better architecture for the task.

This short version of a submitted work introduces a simple
and easy to use technique to learn the width of each neural
network’s layer without imposing upper bounds (we refer to it
as unbounded width). The width of each layer is dynamically
adjusted during backpropagation, and it only requires a slight

modification to the neural activations that does not alter the
ability to parallelize computation.

II. RELATED WORK

Constructive methods dynamically adjust neural network
width. Cascade correlation [3] and firefly network descent [4]
grow networks during training. Lifelong learning algorithms
[5], [6] split/duplicate neurons for new tasks. [7] use heuristics
to expand/shrink MLPs and CNNs, while [8] optimize depth.
Our approach differs by directly computing loss gradients to
adjust width, avoiding heuristics. Bayesian nonparametrics [9],
instead, explore infinite cluster learning. Orthogonal methods
like Neural Architecture Search (NAS) automate network
design [10], [11] using reinforcement learning, evolution,
or gradients [12]–[14]. Despite advances [15], [16], NAS
remains costly and assumes a bounded search space, making
it complementary to our method. Pruning [17], [18] and
distillation [19] reduce model size, often with performance
trade-offs. Unlike pruning, we remove connections while
reducing memory; unlike distillation, we avoid retraining. These
techniques can however be combined with our approach.

III. ADAPTIVE WIDTH LEARNING

We introduce a general probabilistic framework, called
Adaptive Width Neural Networks (AWNN) for convenience,
showing how (ultimately simple) design choices arise from a
variational inference treatment of a graphical model.
We are given a dataset of N i.i.d. samples (xi, yi), with input
xi ∈ RF , F ∈ N+ and target yi whose domain depends on
whether the task is regression or classification. For samples X
and targets Y , the objective is to maximize

log p(Y |X) = log

N∏
i=1

p(yi|xi) =

N∑
i=1

log p(yi|xi) (1)

with respect to the learnable parameters of p(y|x). To formalize
learning of a neural network that maximizes Equation (1)
and learns an unbounded width for each hidden layer ℓ, we
assume the existence of an infinite sequence of i.i.d. latent
variables θℓ = {θℓn}∞n=1, where θℓn is a multivariate variable
over the learnable weights of neuron n at layer ℓ. Since
this implies modeling an infinite-width layer, we introduce
a latent variable λℓ that decides how many neurons to use
at each layer ℓ. That is, it “truncates” an infinite width to a
finite value so that we can perform inference. For a network
of L layers, we define θ = {θℓ}Lℓ=1 and λ = {λℓ}Lℓ=1,
assuming independence across layers. Therefore, one can write

p(yi|xi) =
∫
p(yi,λ,θ|xi)dλdθ. We assume that the joint

distribution decomposes as:

p(Y,λ,θ|X) =

N∏
i=1

p(yi,λ,θ|xi) (2)

p(yi,λ,θ|xi) = p(yi|λ,θ, xi)p(λ)p(θ) (3)

p(λ) =

L∏
ℓ=1

p(λℓ) =

L∏
ℓ=1

N (λℓ;µ
λ
ℓ , σ

λ
ℓ) (4)

p(θ) =

L∏
ℓ=1

∞∏
n=1

p(θℓn)=
L∏

ℓ=1

∞∏
n=1

N (θℓn;0, diag(σθ
ℓ)) (5)

p(yi|λ,θ, xi) = Neural Network of Section III-A. (6)

Here, σθ
ℓ , µ

λ
ℓ , σ

λ
ℓ are hyper-parameters. The neural network

is parametrized by realizations λ,θ, so it relies on a finite
number of neurons and outputs either class probabilities (clas-
sification) or the mean of a Gaussian distribution (regression) to
parametrize p(yi|λ,θ, xi) depending on the task. Maximizing
Equation (1), however, requires computing the above integral,
which is intractable. Therefore, we turn to mean-field variational
inference [20] to maximize an expected lower bound (ELBO)
instead. This requires to define a distribution over the latent
variables q(λ,θ) and re-phrase the objective as:

log p(Y |X) ≥
N∑
i=1

Eq(λ,θ)

[
log

p(yi,λ,θ|xi)

q(λ,θ)

]
, (7)

where q(λ,θ) is parametrized by learnable variational param-
eters. For a distribution fℓ parametrized by λℓ, we factorize
the variational distribution into:

q(λ,θ) = q(λ)q(θ|λ) (8)

q(λ) =

L∏
ℓ=1

q(λℓ) =

L∏
ℓ=1

N (λℓ; νℓ, 1) (9)

q(θ|λ) =
L∏

ℓ=1

Dℓ∏
n=1

q(θℓn)

∞∏
Dℓ+1

p(θℓn) (10)

q(θℓn) = N (θℓn; diag(ρℓn), I). (11)
Dℓ = quantile function of fℓ(·;λℓ) evaluated at k (12)

The value k is a hyper-parameter, νℓ, ρℓn are variational
parameters and, as before, we define ρℓ = {ρℓn}Dℓ

n=1, ρ =

{ρℓ}
L
ℓ=1 and ν = {νℓ}Lℓ=1. Note that the set of variational

parameters is finite. The truncated width Dℓ, that is the
finite number of neurons at layer ℓ, is computed as the quantile
function evaluated at k of a distribution fℓ with infinite support
over N+, parametrized by λℓ. W.l.o.g., we implement fℓ as a
discretized exponential distribution, following the discretization
strategy of [21]: For a natural x, the discretized distribution
relies on the cumulative distribution function of the exponential:

fℓ(x;λℓ) = (1− eλℓ(x+1))− (1− eλℓ(x)). (13)

We choose the exponential because it is a monotonically
decreasing function and allows us to impose an ordering of
importance among neurons, as detailed in Section III-A.

By expanding Equation 7 using the above definitions
and approximating the expectations at the first order, i.e.,
Eq(λ)[f(λ)]=f(ν) and Eq(θ|λ)[f(θ)] = f(ρ) as in [8], we
obtain the final form of the objective:

L∑
ℓ

log
p(νℓ;µ

λ
ℓ , σ

λ
ℓ)

q(νℓ; νℓ)
+

L∑
ℓ

Dℓ∑
n=1

log
p(ρℓn;σ

θ
ℓ)

q(ρℓn; ρℓn)
+

+

N∑
i=1

log p(yi|λ=ν,θ=ρ, xi), (14)

where distributions’ parameters are made explicit to distinguish
them. The first two terms in the loss regularize the width of
the layers and the magnitude of the parameters, respectively,
whereas the third is is the predictive loss.
In practice, the finite variational parameters ν,ρ are those used
by the neural network in place of λ,θ, which enables easy
optimization via backpropagation. Maximizing Equation (14)
will change each variational parameter νℓ, which in turn will
change the value of Dℓ during training. If Dℓ increases we
initialize new neurons and draw their weights from a standard
normal distribution, otherwise we remove the excess ones.

A. Imposing a Soft Ordering on Neurons’ Importance

Now that the learning objective has been formalized, the
missing ingredient is the definition of the neural network
p(yi|λ=ν,θ=ρ, xi) of Equation 6 as a modified MLP. Com-
pared to a standard MLP, we need to make use of the variational
parameters ν that affect the truncation width at each hidden
layer, whereas ρ are the weights. We choose a monotonically
decreasing function fℓ, so that when a new neuron is added its
relative importance is low and will not drastically impact the
network. In other words, we are imposing a soft ordering of
importance among neurons. We modify the classical activation
hℓ
j of a hidden neuron j at layer ℓ as

hℓ
j = σ

Dℓ−1∑
k=1

wℓ
jkh

ℓ−1
k

 fℓ(j; νℓ), (15)

where Dℓ−1 is the truncated width of the previous layer, σ is
a non-linear activation function and wℓ

jk ∈ ρℓj . That is, we
rescale the activation of each neuron k by its “importance”
fℓ(j; νℓ). Note that the bias parameter is taken into account
by concatenating a dummy value 1 to hℓ−1

k .

IV. EXPERIMENTS AND SETUP

We first quantitatively verify that AWNN does not harm the
performance compared to baseline models and compare the
chosen width by means of grid-search model selection with
the learned width of AWNN. Secondly, we check that AWNN
chooses a higher width for harder tasks, which can be seen as
increasing the hypotheses space until the neural network finds
a good path to convergence. Finally, we analyze the ability to
compress information during training.

We compare a baseline that undergoes proper hyper-
parameter tuning against its AWNN version, where we replace
any fixed MLP with an adaptive one. For space reasons, we

Table I
QUANTITATIVE RESULTS AND CHOSEN WIDTH. “LINEAR” MEANS LINEAR

MODEL AS OPPOSED TO AN MLP.

Fixed AWNN Width
(Fixed)

Width
(AWNN)

Mean (Std) Mean (Std) Mean (Std)

DoubleMoon 100.0 (0.0) 100.0 (0.0) 8 8.1 (2.8)
Spiral 99.5 (0.5) 99.8 (0.1) 16 65.9 (8.7)
SpiralHard 98.0 (2.0) 100.0 (0.0) 32 227.4 (32.4)
MNIST 99.6 (0.1) 99.7 (0.0) Linear 19.4 (4.8)
CIFAR10 91.4 (0.2) 91.4 (0.2) Linear 80.1 (12.4)
CIFAR100 66.5 (0.4) 63.1 (4.0) 256 161.9 (57.8)
NCI1 80.0 (1.4) 80.0 (1.1) Unknown 731.3 (128.2)
REDDIT-B 87.0 (4.4) 90.2 (1.3) Unknown 793.6 (574.0)
Multi30k (↓) 1.43 (0.4) 1.51 (0.2) 24576 123.2 (187.9)

cannot provide a detailed hyper-parameters list, but the guiding
principle is that the set of hyper-parameters tried is the same
with the exception of the width, which in AWNN is learned.
First, we train an MLP on 3 synthetic two-dimensional tabular
tasks of increasing binary classification difficulty, namely a
double moon (2500 samples), a spiral (2500 samples), and
a double spiral (5000 samples) that we call SpiralHard. A
stratified hold-out split of 70% training/10% validation/20%
test for risk assessment is chosen at random for these datasets.
Similarly, we consider a ResNet-20 [22] trained on 3 image
classification tasks, namely MNIST, CIFAR10, and CIFAR100,
where data splits and preprocessing are taken from the original
paper and AWNN is applied to the downstream classifier. In
the graph domain, we train a Graph Isomorphism Network
on the NCI1 and REDDIT-B classification tasks using the
same split and evaluation setup of [23] (in this case, we report
published results). On all these tasks, the metric of interest is the
accuracy. Finally, for the textual domain we train a Transformer
architecture on the Multi30k English-German translation task
[24], using a pretrained GPT-2 Tokenizer, and we evaluate the
cross-entropy loss over the translated words. On tabular, image,
and text-based tasks, an internal validation set (10%) for model
selection is extracted from the union of outer training and
validation sets, and the best configuration chosen according to
the internal validation set is retrained 10 times on the outer
train/validation/test splits, averaging test performances.

V. RESULTS

We begin by discussing the quantitative results of our
experiments: Table I reports means and standard deviations
across the 10 final training runs. In terms of performance,
we observe that AWNN is more stable or accurate than a
fixed MLP on DoubleMoon, Spiral, and SpiralHard; all other
things being equal, it seems that using more neurons and
their soft ordering are the main contributing factors to these
improvements. On the image datasets, performances of AWNN
are comparable to those of the fixed baseline but for CIFAR100,
due to an unlucky run that did not converge. In this case,
AWNN learns a smaller total width compared to grid search.

Results on graph datasets are interesting in two respects:
First, the performance on REDDIT-B is significantly improved
by AWNN both in terms of average performance and stability
of results; second, the total learned width is significantly higher
than those tried in [23], [25], meaning that a biased choice of
a good range of width has had a profound influence on the
estimation of the risk for a specific family of DGN models
(i.e., GIN). This result makes it evident that it is important
to let the network decide how many neurons are necessary
to solve the task. Finally, the results on the Multi30k show
that the AWNN Transformer learns to use 200x parameters
less than the fixed Transformer for the feed-forward networks,
achieving a statistically comparable test loss.

A. Adaptation to Task Difficulty and Convergence

Intuitively, one would expect that AWNN learned larger
widths for more difficult tasks. This is indeed what happens on
the tabular datasets where some tasks are clearly harder than
others. Figure 1 (left) shows that, given the same starting width
per layer, the learned number of neurons grows according to the
task’s difficulty. It also appears that convergence is not affected
by the introduction of AWNN, as investigated in Figure 1
(right), which was not obvious considering the parametrization
constraints encouraged by the rescaling of neurons’ activations.

B. Online Network Compression via Regularization

So far, we have used an uninformative prior p(λ) over
the neural networks’ width. We demonstrate the effect of an
informative prior by performing an annealing experiment on
the SpiralHard dataset. We set an uninformative p(θ) and
ReLU6 nonlinearity. At epoch 1000, we introduce p(λℓ) =
N (λℓ; 0.05, 1), and gradually anneal the standard deviation
up to 0.1 at epoch 2500. Figure 2 shows that the width of
the network reduces from approximately 800 neurons to 300
without any test performance de gradation. We hypothesize that
the least important neurons mostly carry negligible information,
and therefore they can be safely removed without drastic
changes in the output of the model. This technique might be
useful to compress large models with billions of parameters.

VI. CONCLUSIONS

We introduced a new methodology to learn an unbounded
width of neural network layers within a single training, by
imposing a soft ordering of importance among neurons. Our
approach requires very few changes to the architecture, adapts
the width to the task’s difficulty, and does not impact negatively
convergence. A by-product of neurons’ ordering is the ability
to easily compress the network during training.

REFERENCES

[1] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[3] S. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Proceedings of the 3rd Conference on Neural Information
Processing Systems (NIPS), 1989.

100 101 102 103

Epoch

100

101

102

103
L

ea
rn

ed
H

id
de

n
N

eu
ro

ns

DoubleMoon
Spiral
SpiralHard (L=1)
SpiralHard (L=2)

100 101 102 103

Epoch

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Dataset
DoubleMoon
Spiral
SpiralHard (L=1)
SpiralHard (L=2)
Network
AWN
Fixed

Figure 1. (Left) The learned width adapts to the increasing difficulty of the task, from the DoubleMoon to SpiralHard. (Right) AWNN reaches perfect test
accuracy with a comparable amount of epochs on DoubleMoon and Spiral, while it converges faster on SpiralHard.

0 1000 2000 3000 4000 5000

Epoch

102

103

104

L
ea

rn
ed

H
id

d
en

N
eu

ro
n

s

Start: Width Regularization

0 1000 2000 3000 4000 5000

Epoch

60

70

80

90

100

A
cc

u
ra

cy
(%

)

0 1000 2500 5000

Epoch

0

1

2

lo
g
p
(ν

)
−

lo
g
q
(ν

)
Figure 2. It is possible to regularize the width at training time by increasing the magnitude of the loss term log

p(ν)
q(ν)

. The total width is reduced by more than
50% (left) while preserving accuracy (right). The inset plot refers to the loss term that AWNN tries to maximize.

[4] L. Wu, B. Liu, P. Stone, and Q. Liu, “Firefly neural architecture descent:
a general approach for growing neural networks,” in Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS),
vol. 33, 2020.

[5] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” in 6th International Conference on
Learning Representations (ICLR), 2018.

[6] L. Wu, D. Wang, and Q. Liu, “Splitting steepest descent for growing
neural architectures,” in Proceedings of the 33rd Conference on Neural
Information Processing Systems (NeurIPS), 2019.

[7] R. Mitchell, M. Mundt, and K. Kersting, “Self expanding neural networks,”
arXiv preprint, 2023.

[8] A. Nazaret and D. Blei, “Variational inference for infinitely deep neural
networks,” in Proceedings of the 39th International Conference on
Machine Learning (ICML), 2022.

[9] P. Orbanz and Y. W. Teh, “Bayesian nonparametric models,” Encyclopedia
of machine learning, vol. 1, 2010.

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, pp. 1–21, 2019.

[11] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey,
and F. Hutter, “Neural architecture search: Insights from 1000 papers,”
arXiv preprint, 2023.

[12] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in 4th International Conference on Learning Representations
(ICLR), 2016.

[13] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), 2019.

[14] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in 7th International Conference on Learning Representations
(ICLR), 2019.

[15] A. Brock, T. Lim, J. Ritchie, and N. Weston, “SMASH: One-shot
model architecture search through hypernetworks,” in 6th International
Conference on Learning Representations (ICLR), 2018.

[16] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in Proceedings of
the 35th International Conference on Machine Learning (ICML), 2018.

[17] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?,” in Proceedings of machine learning
and systems (MLSys), 2020.

[18] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh,
C. Yu, and P. Micikevicius, “Accelerating sparse deep neural networks,”
arXiv preprint, 2021.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint, 2015.

[20] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A
review for statisticians,” Journal of the American statistical Association,
vol. 112, no. 518, pp. 859–877, 2017.

[21] D. Roy, “The discrete normal distribution,” Communications in Statistics
- Theory and Methods, vol. 32, pp. 1871–1883, 2003.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[23] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison
of graph neural networks for graph classification,” in 8th International
Conference on Learning Representations (ICLR), 2020.

[24] D. Elliott, S. Frank, K. Sima’an, and L. Specia, “Multi30k: Multilingual
english-german image descriptions,” in Proceedings of the 5th Workshop
on Vision and Language, 2016.

[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?,” in 7th International Conference on Learning
Representations (ICLR), 2019.

	Introduction
	Related Work
	Adaptive Width Learning
	Imposing a Soft Ordering on Neurons' Importance

	Experiments and Setup
	Results
	Adaptation to Task Difficulty and Convergence
	Online Network Compression via Regularization

	Conclusions
	References

