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Abstract—Message-passing architectures struggle to suffi-
ciently model long-range dependencies in node and graph predic-
tion tasks. We propose a novel approach exploiting hierarchical
graph structures and adaptive random walks to address this
challenge. Our method introduces learnable transition probabil-
ities that decide whether the walk should prefer the original
graph or travel across hierarchical shortcuts. On a synthetic
long-range task, we demonstrate that our approach can exceed
the theoretical bound that constrains traditional approaches
operating solely on the original topology. Specifically, walks that
prefer the hierarchy achieve the same performance as longer
walks on the original graph. These preliminary findings open a
promising direction for efficiently processing large graphs while
effectively capturing long-range dependencies.

Index Terms—Graph Learning, Adaptive Random Walks,
Hierarchical Graphs, Long Range, Graph Neural Networks

I. INTRODUCTION

The field of graph machine learning studies how to leverage
the information contained in a graph – an abstract represen-
tations for a set of interconnected entities – to solve node
and graph prediction tasks in a data-driven manner [1]. As
of today, the message-passing paradigm [2], [3] remains the
most prominent approach to graph processing, where nodes
exchange messages between each other and iteratively increase
their contextual information as a result. In this paper, we are
interested in solving tasks where it is presumably required to
consider long-range interactions between distant nodes.

Capturing long-range dependencies in graphs poses a signif-
icant challenge because of how information flows through the
network topology. In standard message-passing architectures,
nodes synchronously exchange messages at each iteration,
causing an exponential growth in receptive fields as the
number of iterations increases. This inevitably forces models
to compress vast amounts of information into fixed-size node
embeddings, which can lead to significant information loss – a
problem known as oversquashing [4]. For tasks requiring long-
range dependencies, traditional message-passing architectures
rely on many iterations (or graph convolution layers), which
can worsen the oversquashing problem. In this sense, over-
squashing is one of the potential barriers to solve long-range
propagation tasks on graphs.

Two promising approaches have emerged to address long-
range challenges. First, hierarchical methods introduce vir-
tual structures above the original graph, reducing topological
distances between distant nodes. Current message-passing

approaches based on hierarchies mostly require ad-hoc def-
initions of graph convolutional layers for the hierarchy [5]–
[7], but this does not necessarily mitigate oversquashing, even
if one reduces the number of message-passing iterations, as
the coarse-graining process into hierarchical nodes may cause
the same process of information loss. In contrast, the second
approach, namely random walks (RWs), has shown promising
results to mitigate these effects while capturing long-range
interactions. Because RWs have access to the original node
embeddings while walking, there should be less squashing of
information into the individual nodes. Moreover, they proved
being beneficial to augment node features with structural
embeddings [8]. However, due to the uninformed walking
process, it is unclear how likely and well they can capture
long range phenomenons unless they walk the entire graph.

In light of these facts, the contribution of this work is
to combine the use of a hierarchical strucure with adaptive
RW transition probabilities to approach long-range problems
defined on graphs. This way, the model can decide whether
it makes sense to walk the hierarchy or the original graph.
We validate our approach on a synthetic dataset with provable
bounds on expected performance, where we demonstrate that
our adaptive hierarchical walks substantially outperform stan-
dard random walk approaches operating on either the original
or hierarchical topology alone. Specifically, we show that
our method can exceed the theoretical bound that constrains
approaches operating solely on the original graph structure,
achieving with shorter walks what would require significantly
longer traversals in conventional approaches.

II. RELATED WORK

Walk-based approaches provide an effective alternative to
graph representation learning. Early work such as DeepWalk
[9] introduced treating such walks as sentences and nodes as
words. Node2Vec [10] extended this by biasing the walking
strategy in favour of balanced exploration, while AgentNet
[11] aimed to fully learn the walk policy. CRAWL [12]
incorporated additional topology information directly into
walk processing with sequence models. Recent success on
applying state space models for graph learning, as demon-
strated by GraphMamba [13], has led to renewed interest
in combining these techniques with random walks [14]–[16].
However, current approaches remain limited to uninformed



walks on the original graph topology when capturing long-
range dependencies.

Hierarchical approaches offer valuable perspectives on
multi-level graph modeling. METIS [17] established funda-
mental partitioning techniques, while recent work on Hierar-
chical Support Graphs [18] and hierarchical learning [5] have
shown how coarsened structures can improve the performance
of message passing, often utilizing pooling methods [19] and
set-based representations [20]. While these approaches reduce
distances between nodes in the graph, they may not be enough
to overcome the challenges associated with message passing
such as oversquashing or may even introduce new information
bottlenecks for it.

III. METHOD

We propose to combine hierarchical graph structures with
learnable random walks to address long-range interactions
in graphs. The key insight of our approach is that these
two paradigms offer complementary advantages. Hierarchical
structures provide efficient shortcuts between distant regions
of the graph, while random walks avoid compression of infor-
mation stored in the nodes compared to message-passing. By
introducing a coarser virtual structure above the original graph,
we create alternative paths between distant nodes, effectively
reducing their topological distance. The model can learn to
navigate between the detailed information in the original graph
and the hierarchy as needed for the task. This allows us to
capture long-range patterns using significantly shorter walks
than would be required when operating solely on the original
topology.

Our approach consists of three main components: a hier-
archical graph structure that provides multiple levels of ab-
straction, an adaptive random walk mechanism with learnable
transition probabilities, and a walk processing module that
embeds walk sequences into node representations. Figure 1
illustrates how our approach facilitates efficient long-range
information propagation compared to standard random walks
on the original graph.

Hierarchical Graph Given an input graph G = (V,E),
we construct a hierarchical graph GH = (VH , EH) where
VH = V ∪V1∪. . .∪VL and EH = E∪E1∪. . .∪EL∪Eparent.
Here, V represents the original graph nodes (level 0), while
Vl represents nodes at hierarchical level l. Each new level of
the hierarchy represents a coarser variant of the level below
it, preserving topological structure through El. Moreover, each
node connects to exactly one parent in the upper level through
Eparent. This process continues until the top level contains
only a single node. We use the METIS partitioning algorithm
[17] to build this hierarchical structure, which has been shown
effective for creating appropriate hierarchical support graphs
[18]. We set the refinement factor to 1

2 , meaning that each new
level has approximately half the nodes of the previous level.
This ensures that the overall size of the hierarchical graph GH

remains linear in the size of the original graph |VH | = O (|V |),
while the number of levels L is logarithmic O (log |V |).

The features xl
v of the new virtual nodes are initialized

using the mean of all descendants u ∈ V0 that are original
vertices x0

u. Additionally, all edges are augmented with their
respective type and direction (up, down, horizontal). Then,
we learn hierarchical node embeddings through a bottom-up
formulation using DeepSet pooling [20]. For each level l in
the hierarchy, we aggregate information from nodes at level
l−1 to inform representations at level l. For each node v ∈ Vl,
we first transform the embeddings of its children C(v) ⊂ Vl−1

, aggregate them through summation, and combine this aggre-
gated information with v’s current representation:

hl
v = ϕout([x

l
v ||

∑
u∈C(v)

ϕin(h
l−1
u )]) (1)

Where h0
v = x0

v , || denotes concatenation and the ϕ are
implemented as MLPs. This process is repeated for each
hierarchical level, enabling information to flow from the
original graph to the coarsest level of abstraction.

Fig. 1. Starting from the original graph topology, we create a hierarchical
coarsened graph structure on top of it. On the original graph topology,
capturing long range interactions with random walks might require very long
walks, whereas the same can be achieved with adaptive random walks through
the hierarchy. The hierarchical connections enable efficient ’jumps’ between
distant regions of the graph.

Adaptive Walks At the core of our approach is the adaptive
random walk mechanism that learns to navigate the original
and/or hierarchical graph structures. For each node v ∈ V0, we
sample k walks of length L starting from v. Unlike standard
random walks that use uniform transition probabilities, we use
a learnable transition function q implemented as a MLP, which
determines the probability of moving from node u ∈ VH to
node v ∈ VH :

Pr(v|u) = exp(q(hu, hv, euv))∑
w∈N (u) exp(q(hu, hw, euw))

(2)

Where N (u) denotes the neighbors of u, including both the
original and hierarchical edges. We use the Gumbel-Softmax
[21] for differentiable discrete sampling, enabling an end-to-
end training procedure. Importantly, to prevent the walker from
immediately returning to its previous position, we mask out the
previous node during sampling. This adaptive mechanism is
crucial for efficiently capturing long-range dependencies, as it
allows our model to learn and trade off navigating the original
graph for local details and to leverage hierarchical shortcuts
to reach distant regions.



Walk Aggregation Each sampled walk v0, v1, ..., vL−1

results in a sequence of node embeddings, which we process
using a Mamba sequence model [22]. Mamba has been shown
to be effective for processing RW on graphs [14], to derive a
sequence of embeddings per walk:

zw = Φ([hv0 , hv1 , . . . , hvL−1
]) = [sv0 , sv1 , ..., svL−1

] (3)

Where Φ is a Mamba model. Finally, we aggregate these
embeddings to the origin nodes of the walks for all v ∈ V0.

ov = hv + ϕ

(
1

kL

∑
w:v0=v

svi

)
(4)

The resulting node embedding combines the original node
representation with information from k adaptive walks and
can then be used for the corresponding downstream task.

IV. EXPERIMENTS

We evaluate our method on the PrefixSum task [23], a
controllable benchmark in which we can isolate and measure
a model’s ability to capture long-range interactions. For our
experiments, we construct undirected line graphs with n = 16
nodes, where each node has a binary feature xi ∈ 0, 1 sampled
uniformly and its position. The task for node i is to predict
yi = (

∑i
j=0 xj) mod 2, which requires integrating infor-

mation from all preceding nodes. This creates dependencies
of varying lengths throughout the graph, with later nodes
requiring longer-range dependencies. What makes this task
particularly interesting is its provable theoretical bound: any
model with walk length (or convolution depth) L ≤ n, the
expected accuracy over the data distribution A is bounded by:

E[A] ≤ 1−
n−L
n

2
=

1

2
+

L

2n
(5)

As x0 can only be part of the receptive field of (n−L) nodes,
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Fig. 2. Restricted to the graph, models cannot go beyond the expected
accuracy if L ≤ n. However, with our hierarchical approach (right), walks
can gather information from much farther away, achieving performance that
would require much longer walks on the original graph

meaning the other nodes cannot deterministically determine
their correct sum. Importantly, this bound applies to any model
that operates on the original topology.

Our dataset consists of 1000 randomly generated instances,
split 80/10/10 for training/validation/testing. We train all mod-
els using AdamW for 200 epochs following a cosine learning

rate schedule with an initial warmup of 5 epochs, and we set
k = 10. We report all node-level prediction accuracies aver-
aged over 5 independent runs. We evaluate the performance of
our approach using both learned and random transitions as well
as the role of the hierarchical graph construction. This setup
allows us to isolate the effects of both the hierarchical structure
and the adaptive walker, demonstrating their contributions to
long-range dependency modeling.

V. RESULTS

We first evaluate the methods on the original graph topology,
illustrated in Figure 2 (left). These results confirm that models
operating solely on the original graph topology cannot exceed
the theoretical accuracy bound of 0.5 + L/2n, regardless of
model architecture. As a consequence, all standard random
walks methods fall at or below this bound regardless of their
specific architecture. In contrast, Figure 2 (right) shows that
our method incorporating hierarchical walks can clearly go
beyond this theoretical bound. By leveraging the hierarchical
structure, our approach can achieve the same performance with
walks of length L that would require longer walks of length
> L on the original graph. This demonstrates the benefit of
the hierarchical structure, which fundamentally changes what
is achievable within limited walk lengths.

Figure 3 provides additional insights into the learned mod-
els, illustrating the performance depending on the number of
sampled walks per node during inference. As we decrease the
number k of walks per node, the advantage of learned walks
over random walks becomes more substantial. Note that both
variants make use of non-backtracking walks. Moreover, both
variants of our method outperform the theoretical bound for
classical approaches, however, the learned variant can effi-
ciently achieve higher accuracy with fewer samples. Notably,
these learned walks still match or exceed the performance of
longer walks which are sampled randomly. This underlines
the viability and effectiveness of adaptively navigating the
hierarchical structure in a learned manner.

Summarizing, these results show that adaptive walks on a
hierarchical structure allow for more effective propagation of
information across long distances in the graph. The ability
of our method to exceed the theoretical bound shows the
benefit of incorporating coarsened structure. Therefore, these
results open up promising directions of learning long range
interactions using shorter walks of sublinear length, which
could be especially interesting for very large graphs.

VI. CONCLUSION

In this work, we introduced a novel approach combining
hierarchical graph structures with adaptive random walks to
address the challenge of capturing long-range dependencies
on graphs. Our key contribution lies in demonstrating that
such hierarchical walks can overcome the limitations that
constrain models operating solely on the original graph topol-
ogy. Through experiments on the PrefixSum task, we showed
that our method achieves the same performance with walks
of length L that would require much longer walks on the
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Fig. 3. When we decrease the number of sampled walks per node k during inference, we observe the increasing advantage of learned hierarchical walks.
While both of our variants perform better than the derived accuracy bound for classical approaches, the learned variant can do so sooner, using fewer walks.
Note how even short learned walks match or outperform much longer random walks.

original graph. The results reveal two important findings: First,
creating coarsened structures through a hierarchy changes
what performance is achievable within given walk lengths.
Second, learning adaptive transitions can significantly improve
efficiency, enabling our model to maintain higher performance
with fewer sampled walks compared to random traversal
strategies. Moreover, the short learned walks achieve the same
performance as longer random walks, even on the hierarchy.
These findings open up promising directions for capturing
long-range interactions, particularly for applications to very
large graphs, where using shorter, more efficient walks could
yield substantial advantages.

REFERENCES

[1] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction
to deep learning for graphs,” Neural Networks, vol. 129, pp. 203–221,
9 2020.

[2] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[3] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp.
498–511, 2009.

[4] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and
its practical implications,” in 9th International Conference on Learning
Representations (ICLR), 2021.
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