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Abstract—Kolmogorov Arnold Networks (KANs) are an
emerging architecture for building machine learning models.
KANs are based on the theoretical foundation of the Kolmogorov-
Arnold Theorem and its expansions, which provide an exact
representation of a multi-variate continuous bounded function as
the composition of a limited number of uni-variate continuous
functions. While such theoretical results are powerful, its use as
a representation learning alternative to multi-layer perceptron
(MLP) hinges on the choice of the number of bases modeling
each of the univariate functions. In this work, we show how to
address this problem by adaptively learning a potentially infinite
number of bases for each univariate function during training.
We do so by means of a variational inference optimization prob-
lem. Our proposal, called INFINITYKAN, extends the potential
applicability of KANs by treating an important hyper-parameter
as part of the learning process.

Index Terms—Kolmogorov-Arnold Theorem, KAN, MLP, Ma-
chine Learning, Variational Optimization

I. INTRODUCTION

Kolmogorov-Arnold Networks (KANs) [1] have recently
gained attention in the machine learning community as a po-
tential alternative to the widely-used Multi-Layer Perceptrons
(MLPs) [2]. MLPs have been instrumental in transforming
machine learning due to their ability to approximate any
continuous function, a capability supported by the universal
approximation theorem [2]. The Kolmogorov-Arnold Theorem
(KAT), originally developed to address Hilbert’s 13th problem,
is a fundamental mathematical result with numerous implica-
tions [3]. While the universal approximation theorem suggests
that any continuous function can be approximated using an
MLP of bounded width, KAT represents any multivariate
function exactly using a finite and known number of univariate
functions. KAT’s influence extends beyond pure mathematics,
finding applications in diverse fields such as fuzzy logic, pat-
tern recognition, and neural networks [4]–[8]. This versatility
has contributed to its growing importance in the machine-
learning community. KAT-based results have been applied in
several ways, including the development of machine learning
models, called Kolmogorov-Arnold Networks (KANs) that
stand as a potential alternatives to MLPs in solving arbitrary
tasks [9], [10].

However, while the KAT argues for the existence of a
univariate functions that represent the target function exactly,
the choice of the basis functions that model each univariate
function remains an open problem. It is of no surprise that

KANs’ effectiveness in addressing complex, high-dimensional
problems heavily relies on the choice, construction, and train-
ing of appropriate basis functions.

Various proposals for the basis functions have been made,
such as orthogonal polynomials, spline, sinusoidal, wavelets,
or adaptive basis selection methods, which may depend on the
specific problem at hand [11]–[14]. Not only does the choice
of family for basis functions remain a problem, but also the
number of basis function to use is not known in advance,
an a wrong selection of this number can greatly affect the
representational ability of KANs for a given problem.

We therefore present INFINITYKAN, which models the
univariate functions using an adaptive and potentially infi-
nite number of bases. INFINITYKAN handles the unbounded
number of bases by means of a truncated window function,
in a way that provides gradient information for the window
to be updated. The model’s design stems from a variational
treatment of the learning problem, which is in line with the
topic of the workshop.

Summarizing, our contributions are: i) a variational treat-
ment of the learning problem (Section III) that tractably
models an unbounded number of basis for the univariate
functions; ii) an experimental validation (Section IV) of the
performance of the proposed variational approach on common
regression and classification tasks.

II. RELATED WORKS

Recent research [15] has expanded on KAT foundations,
exploring the capabilities of KAN-based models in high-
dimensional spaces and their potential to mitigate the curse
of dimensionality [16]. Various KAN architectures have been
proposed: KAN has been combined with Convolutional Neural
Networks (CNNs) [17], or with transformer models [18],
leading to improved efficiency in sequence modeling tasks.
Furthermore, EKAN incorporates matrix group equivariance
[19] into KANs, while GKSN [20] explores the extension
to invariant and equivariant functions to model physical and
geometrical symmetries.

KANs have demonstrated their versatility across a wide
spectrum of machine learning applications [21], particularly
in scenarios demanding efficient (i.e. small number of param-
eters) function approximation with a limited parameter budget.
Their effectiveness in high-dimensional regression problems,
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where traditional neural networks often face scalability issues,
was notably demonstrated by Kůrková in 1991 [22].

Adaptive architectures have been proposed for MLP models.
For example, [23] extends the network with an additional
hidden units as the end of a training phase, while firefly
network descent [24] grows the width and depth of a neural
network during training. In continual learning [25], network
models are updated based on new tasks, or neurons are
duplicated or removed according to heuristics to create more
capacity [26], [27]. The unbounded depth network of [28],
recently applied to graphs [29], and adaptive width neural
network [30] also use a variational approach to learn the
number of layers of a residual neural network or the number
of neurons in a neural network, but these approaches are not
directly applicable, since the output is not additive in KAN
models.

III. INFINITY KOLMOGOROV-ARNOLD NETWORK

We first recap the definition of a KAN layer before intro-
ducing our extension to learn an unbounded number of basis
functions.

A. KAN Layer and basis functions

While the KAT theorem provides a way to represent a
generic continuous multivariate function f(x1, . . . , xn) as

f(x1, . . . , xd) =

2d+1∑
q=1

ψq

(
d∑

p=1

ϕqp(xp)

)
with xp ∈ [0, 1] and ϕqp, ψq continuous univariate functions,
we consider the KAN composed of L layers (see Figure 1),
where each layer ℓ ∈ {1, . . . , L} implements the mapping
from [0, 1]dℓ−1 → [0, 1]dℓ using the univariate functions {ϕℓqp},

Fig. 1: (Upper) KAN
composed of two layers;
(Bottom) the basis func-
tions φn

k (x) (ReLU) used
to build ϕℓnqp(x).

which are used to compute
the hidden variables
xℓ = ϕℓ(xℓ−1) = {xℓq | xℓq =

hℓq(x
ℓ−1
1 , . . . , xℓ−1

dℓ−1
) =∑dℓ−1

p=1 ϕ
ℓ
qp(x

ℓ−1
p )},∀q ∈ [dℓ],

from previous layer variables
xℓ−1 = {xℓ−1

p },∀p ∈ [dℓ−1].
The KAT does not tell
us how to find the
univariate functions, but
it is possible to build
a convergent series for
any uniformly continuous
function ϕ(x) as a linear
combination of either
step or ReLU functions:
ϕ(x) = limn→∞ ϕn(x) with
ϕn(x) =

∑n
k=1 ϕ

n
k (x) =

∑n
k=1 θ

n
kφ

n
k (x) where φn

k (x) can
either be a step function parametrized by δk or a ReLU
function. Therefore, in the following, we refer to φn

k (x) as the
generative functions of the basis ϕnk (x). Therefore, w.l.o.g.

we represent each univariate function in a KAN layer ℓ as the
limit of the linear combination of the basis functions φn

k (x)

ϕℓqp(x) = lim
n→∞

n∑
k=1

θℓnqpkφ
n
k (x) (1)

Given this model, we can pick a finite n and can train
the parameters {θℓnqpk}k∈[n], where [n] = {1, . . . , n}, for each
layer ℓ, using, for example, back-propagation.

B. Variational training objective

We consider a regression or a classification problem and the
corresponding dataset D composed of i.i.d. samples (X,Y ) =
{(xi, yi)}Di=1, with xi ∈ Rd and yi ∈ Rd′

. If we build a
probabilistic model implementing the distribution p(Y |X) the
objective is to maximize the dataset log-likelihood

L{D} = ln p(Y |X) (2)

Fig. 2: The graphical
model of INFINITYKAN,
with the observable vari-
ables (in green) xi, yi and
latent variables (in blue)
θℓnqpk, λ

ℓ.

If we modeled the probability dis-
tribution with a multi-layer KAN
network, we would need to op-
timize Equation (2) with respect
to the functions ϕℓqp. However,
based on Equation (1), we first
introduce an infinite-dimensional
family of KANs. To this end,
we introduce two latent variables
that parameterize such a family.
Each layer has a set of param-
eters θℓ = {θℓnqpk, k ∈ [n]}∞n=1

(see Equation (1)), with θℓnqpk is
a multivariate variable over the
learnable weights of the k-th basis
function at layer ℓ and for the qp univariate function.

We further introduce a latent variable λℓ that defines the
number of basis functions n used at layer ℓ. As we sample
n ∼ p(n|λℓ)p(λℓ) , in effect we are defining a finite learning
objective and we can perform inference. For a KAN of L
layers, we define θ =

{
θℓ
}
ℓ∈[L]

and λ = {λℓ}ℓ∈[L] and
we assume independence across all layers, which allows us
to write p(Y |X) =

∫
dθdλp(Y ,θ,λ|X). Similar to [28]),

we now assume that θ,λ are independenent, i.e. p(θ,λ) =
p(θ)p(λ) and, based on the graphical model of Figure 2, we
write the following distributions

p(Y ,θ,λ|X) = p(Y |θ,λ,X)p(θ)p(λ) (3)

p(λ) =

L∏
ℓ=1

p(λℓ) =

L∏
ℓ=1

P(λℓ; ηℓ) (4)

p(θ) =
∏

ℓ∈[L],
n=1,...,∞,k∈[n],
q∈[dℓ],p∈[dℓ−1]

p(θℓnqpk) (5)

p(θℓnqpk) = N (θℓnqpk;0,diag (σ
ℓ)) (6)

with P(λ; η) the Poisson distribution, while N (θ;µ, σ) is the
Gaussian distribution. The predictive model p(Y |θ,λ,X) is
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based on the KAN architecture and is described later. The
distributions depend on the prior’s hyper-parameters η = {ηℓ}
and σ = {σℓ}, while the KAN is parametrized by θ, and λ.
Maximizing directly Equation (2) would require computing
an intractable integral, therefore we apply the mean-field
variational inference approach [31], which entails maximizing
the expected lower bound (ELBO), by introducing a learn-
able variational distribution q(θ,λ) and using the concavity
logarithmic function, write the objective as

ln p(Y |X) ≥ Eq(λ,θ)

[
ln
p(Y ,λ,θ|X)

q(λ,θ)

]
(7)

Using the same intuition from [28], we then assume that the
variational distribution can be written as

q(θ,λ) = q(θ|λ)q(λ) (8)

q(λ) =

L∏
ℓ=1

q(λℓ) =

L∏
ℓ=1

P(λℓ; λ̄ℓ) (9)

q(θ|λ) =
∏

ℓ∈[L],
n=Kℓ,
k∈[Kℓ],

q∈[dℓ],p∈[dℓ−1]

q(θℓnqpk)
∏

ℓ∈[L],
n=1,...,∞,n̸=Kℓ

k∈[n]
q∈[dℓ],p∈[dℓ−1]

p(θℓnqpk) (10)

q(θℓnqpk) = N (θℓnqpk; θ̄
ℓn
qpk, I), (11)

with Kℓ = 2λℓ + 1.
By modeling the distribution of the parameters belonging

to a different function in the infinite series with the same
a priori distribution p, its influence on the maximization
problem is removed. While we could model the variance of
the basis’s coefficients with additional trainable parameters,
in the following, we see how the variance is ignored. We
have selected Kℓ to be even, to simplify the construction of
a symmetric basis. We can now write the final objective by
using the previous assumptions and the first-order approxi-
mation of the expectation, i.e. Eq(λ;λ̄)[f(λ)] = f(λ̄), and
Eq(θ|λ;θ̄)[f(θ)] = f(θ̄), in Equation (7),

D∑
i=1

ln p(yi|λ = λ̄,θ = θ̄, xi)

+

L∑
ℓ=1

ln
p(λ̄ℓ; ηℓ)

q(λ̄ℓ; λ̄ℓ)
+
∑
ℓ∈[L],
k∈[Kℓ],

q∈[dℓ],p∈[dℓ−1]

ln p(θ̄ℓKℓ

qpk ;0,diag (σ
ℓ)),

(12)

where we remove the constant term arising from the eval-
uation of q distribution at its mean value, i.e. q(θ̄ℓKℓ

qpk ) =

N (θ̄ℓKℓ

qpk ; θ̄
ℓKℓ

qpk , I) = const and σℓ, ηℓ are the prior’ parameters.
Equipped with Equation (12), we can now train the basis
parameters θ̄ and the bases’ sizes λ̄ using standard stochastic
gradient descent algorithms.

C. Symmetric basis

We now introduce the KAN-based model that implements
the prediction model p(Y |λ = λ̄,θ = θ̄,X), given the

data samples X and the variational parameters {λ,θ}. When
sampling the number of basis functions, λℓ ∼ q(λℓ), we need
to train a different set of parameters θℓKℓ

qpk of Equation (11),
where we dropped the bar from the variable to ease the
notation. By changing the number of basis functions, we
also change their locations. This makes the training difficult.
Further, to estimate the impact of the change in the number of
bases on the loss, we need a continuous relationship between
their size λ and the weights of the bases θ. We therefore
introduce an additional weighting function w = {wKℓ(λℓ)

k }Lℓ=1

parametrized by λ that multiplies the basis weights θ, and
write the KAN Layer as

hℓq(x
ℓ−1
1 , . . . , xℓ−1

dℓ−1
) =

∑
k∈[Kℓ],
p∈[dℓ−1]

θℓKℓ

qpkw
Kℓ

k φKℓ

k (xℓ−1
p ) (13)

with wKℓ

k mimic a symmetric distribution over the basis
functions over the interval [−1, 1]. As a symmetric positive
function, we select

wλ(x) =
(
1 + e−2λ+2|x|

)−1

(14)

evaluated for xk = −λ+ 2(k− 1), k = 1, . . . , 2λ+ 1, so that
wKℓ

k = w(Kℓ−1)/2(xk).

D. Interpolation of the weights

Whenever a new λℓ is sampled, the number of bases could
change. When the number of bases changes from n to n′,
we use simple linear interpolations of the weights wℓ,n′

k =

I[wℓ,n
k ], where wℓ,n′

k = I[wℓ,n
j ] = (1−k n

n′ +j)w
ℓ,n
j +(k n

n′ −
j)wℓ,n

j+1, where j = argmaxj{ j
n ≤ k

n′ },

IV. EXPERIMENTAL VALIDATION

INFINITYKAN overcomes the limitation of selecting the
number of basis functions for each of the layers of a KAN,
we therefore would like to validate if 1) the training procedure
is stable and 2) if the performances are at least competitive
with the a KAN with fixed number of bases. We focus on
regression and classification tasks. We selected 6 datasets, two
synthetic regression tasks on the class of the spiral dataset
(with k = 2, 3 the number of spirals), and four image
classification tasks: MNIST [32], CIFAR10, CIFAR100 [33],
and the RGB version of the EUROSAT [34]. We use the
datasets’ standard split, except for the last, where we randomly
split 80/10/10 training, validation and test, and we apply
normalization on pixel values. We compare the standard KAN
with AdamW [35], with weight decay of 10−5, learning rate of
10−2, and a reduce-on-plateau scheduler. The KAN generative
basis function is Relu [20], with a Batch Normalization 1d
layer [36] to center the input distribution. We use 3 layer KAN
with the initial number of hidden units equal to 16 and the
number of bases equal to 8. The MLP has also 3 layers of 128
neurons each. We train and test for 5′000 epochs. All models
have a three-layer structure and were selected on the spiral
dataset to have a similar number of parameters. We report the
classification test accuracy associated with the best validation
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TABLE I: We compare the accuracy of KAN with a fixed
number of bases, an MLP, and INFINITYKAN on the classi-
fication tasks: CIFAR10, CIFAR100, MNIST, and EUROSAT.
The number of bases per layer (L0,L1,L2) is reported in the
last column.

Model INFINITYKAN KAN MLP L0 L1 L2

MNIST 96.97 96.23 97.87 5.3 10.3 17.0
(std) 0.09 0.12 0.04 0.6 0.6 1.0

CIFAR10 49.88 46.36 51.21 5.7 12.0 12.0
(std) 0.38 0.89 0.70 0.6 0.0 1.0

CIFAR100 21.69 18.57 19.21 5.7 12.0 13.0
(std) 0.41 0.92 0.32 0.6 0.0 0.0

EUROSAT 71.09 69.56 62.59 5.7 12.3 15.7
(std) 0.78 0.78 0.92 0.6 0.6 1.2

TABLE II: We compare the accuracy of KAN with a fixed
number of bases, an MLP, and INFINITYKAN on the regres-
sion tasks: Spiral k = 2, and Spiral k = 3.

Dataset INFINITYKAN KAN MLP L0 L1 l2

Spiral k = 2 5.55 6.59 6.11 12.3 6.0 5.3
(std) 1.11 0.26 0.19 2.1 2.0 1.2

Spiral k = 3 5.05 5.37 5.23 12.3 5.3 6.3
(std) 0.39 0.16 0.61 2.1 0.6 0.6

accuracy. While for the regression, we report the negative log
loss at the end of the training epochs. We use the Hubert loss
for the regression task, while we use the cross-entropy loss
for the classification task.

V. RESULTS

In Table I, we show the accuracy of MLP, KAN, and IN-
FINITYKAN, for the classification tasks and different datasets.
We notice that INFINITYKAN generally outperforms KAN,
while it improved over the MLP for CIFAR10, CIFAR100,
and EUROSAT datasets. In the last three columns, we report
the number of bases per layer. The number of bases increases
for the last layers, while it decreases for the first layers.
INFINITYKAN exhibits relatively high variation in the test
accuracy, while MLP and KAN reduce test accuracy during
training, possibly induced by overfitting to the training dataset.
In Table II, we show the performance of the regression tasks.
In this case, the KAN with a fixed number of bases performs
better overall. The last three columns of the table, report the
number of bases per layer, where we find the opposite behavior
we observed compared to Table I. Therefore, the number of
bases per layer heavily depends on the task.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed INFINITYKAN, a variational inference
method for training KAN model with a potentially infinite
number of bases for each of the layers. Our experiments show
the impact in terms of accuracy or regression error for both
classification and regression tasks, where INFINITYKAN per-
forms generally well on image classification tasks and displays
a non-trivial number of learned bases per layer. We hope
that INFINITYKAN will broaden the scope of applicability
of KANs.
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