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Abstract—When collecting a dataset, it usually contains some
proportion of incomplete data. Various methods for handling this
missing data exist in the literature, such as deleting observations
that contain missing values, or replacing missing values with the
mean of the other observations in the relevant variables. Nev-
ertheless, most of the techniques do not consider the geometric
structure of the data both in the row (instance) space and the
column (feature) space.

In this work, we propose a smoothing or regression procedure
that operates both on the row and column space of the data, and
refines the approximated model in an iterative manner, following
ideas from iterative bias reduction models. We provide a mathe-
matical analysis of the method, as well as test its performance of
several datasets with diverse missingness mechanisms. Promising
results are seen across all of the missingness types and datasets.
Last, the proposed multi-scale approximation is general, and may
be beneficial for additional machine learning tasks that process
tabular data.

Index Terms—multi-scale, kernel regression, imputation, tab-
ular data

I. INTRODUCTION

Handling missing data, known as data imputation, is a com-
mon pre-processing task in data-related applications. When
the amounts of missing or corrupted data are large, the use
of simple versus sophisticated data completion techniques
may determine the quality of the learning model that utilizes
the data set. Hence, although classical techniques for data
completion are widely accessible to the scientific community,
development of new methods is ongoing, with an aim to
improve general and specific data completion tasks.

A straightforward approach to managing missing data is
deletion, which removes samples with incomplete records.
Deletion is easy to understand, simple to implement, and fast
to execute, making it the default method in many applications,
and a reasonable choice when the proportion of missing data
is small [20]. However, this approach has limitations, such
as the potential loss of a significant amount of data or the
introduction of bias.

Single imputation methods, such as mean imputation and
regression, do not remove missing values but instead estimate
replacements. Mean imputation assumes that the mean of
observed values provides the best estimate for a missing value
within a given variable. Its primary advantage is simplicity
[2]. However, this approach has limitations, including under-
estimating the variable’s variance, disregarding relationships

between variables, and introducing bias in covariance and
correlation estimates.

Simple regression imputation, on the other hand, estimates
missing values by constructing a regression model in which
the variable with missing data serves as the dependent variable,
while other relevant observed variables act as independent
predictors [3], [4]. Multiple imputation offers notable advan-
tages over single imputation methods by addressing their key
limitations. By generating m imputed values, it accounts for
the uncertainty associated with missing data. As noted by
Bennett (2001) [20], the final dataset reflects the additional
variation introduced by missing values. A widely used multiple
imputation technique is multivariate imputation by chained
equations (MICE) [5]. However, when a dataset contains
nonlinear or complex relationships among its variables, the
basic regression models used in MICE may struggle to capture
these dependencies effectively.

Kernel methods is a widely used approach for capturing
relationships between data instances derived from real-world
phenomena. Kernels play a crucial role in many unsuper-
vised algorithms designed to find compact representations
that reflect the dataset’s underlying structure. Additionally,
they are fundamental in regression methods, which provide
a straightforward way to model the relationship between
functions that are defined over scattered data points. In the
context of data imputation, kernel-based regression techniques
can overcome limitations of linear based regression imputation
techniques, which assume that the relationship between the
known data points and the target variable to be imputed
is linear. Qin et. al. developed a kernel-based missing data
imputation method that aims to make an optimal inference
on statistical parameters such as the mean and the distribution
function [6]. Zhang et. al proposed a a kernel-based stochastic
non-parametric multi-imputation method to impute in cases of
different missingness mechanisms [7]. A kernel-based method
for multiple imputation was proposed in [9] to predict both the
missing variable and the probability of missingness. A multi-
kernel interpolation approach is suggested in [10] for retrieve
missing ratings in the user–item interaction matrix.

Manifold learning and nonlinear dimensionality reduction
methods rely on kernels to capture the local geometric struc-
ture of the data. This compact representation may be utilized
for data imputation. In [8], the data features are assumed



to reside close to a smooth manifold, the tangent spaces
to the manifold are then used for regressing the missing
values. Dimensionality reduction and clustering was applied
for imputation of medical data [11]. The multi-view missing
data problem was studied in [13], completion of missing values
was done by construction of a multi-manifold regularized non-
negative matrix factorization approach.

Recent work propose to take advantage of the geometric
structure of both the row and the column space. In [12] a co-
clustering technique that solves an optimization problem for
filling in the missing values with smooth ones is proposed.
Recovery of missing EEG data was explored in [14] by
applying nonnegative matrix factorization in a tensor manner.
One limitation of kernel-based and manifold based imputation
techniques is the global computational nature, which processes
the entire dataset to create smooth coordinates that represent
the data. Another gap in this line of work is that single
imputation methods are typically proposed when utilizing
kernels as the main model ingredient. A preliminarily version
of this work that suggested a single imputation technique was
proposed in [15] and [16]. In [16] a single imputation method,
with a different approximation approach was proposed. This
work extends the work in [15] by introducing a multiple
imputation method, mathematical analysis and experimental
results that test several types of missingness mechanisms.

In this paper, we continue the line of work that models both
the row and column geometric structures, while taking into
account multi-scale relationships. To overcome the mentioned
prior limitations, we propose a method that works on many
small sub-sets of the data, allowing to generate multiple
imputation values for each missing point in aim of improving
a global model.

The rest of the paper is organized as follows. Section II out-
lines that proposed method as a single imputation technique.
Extension to multiple imputation is detailed in Section III.
Mathematical formulation of our scheme as a general way to
approximate a function defined over a tabular dataset, as well
as error analysis, are provided in Section IV. Experimental
results are described in Section V. Conclusions and future
directions are discussed in Section VI.

II. MULTI-SCALE SMOOTHERS FOR DATA IMPUTATION

The proposed method is based on the construction of
Nadaraya-Watson regression [17], which successfully models
the relationship between a dataset X and the a function f ,
even when the relationship is between them is not nonlinear.
The estimator is defines as

f̂σ(x) =

∑N
i=1 Kσ(x− xi)fi∑N
i=1 Kσ(x− xi)

,

where Kσ(t) = 1
σK( t

σ ) is a kernel of at least first order(∫∞
−∞ tKσ(t)dt = 0

)
with bandwidth σ.

To refine the regression model, it may be evoked in an
iterative manner that reduces the bias. Practically, in the
second iteration the residual f(x) − f̂(x) is smoothed, and

Fig. 1. Illustration of a dataset with missing values (left) and an indicator
matrix (right).

in the following iterations the process continues, smoothing
the modes of the data that have not been approximated in
earlier iterations.

In this work we build on the successive Nadaraya-Watson
model, but modify the procedure to capture relationships
between the rows and columns of a given dataset. When the
data has in it missing values, the model is built based on the
known entries and imputes the missing values throughout the
construction.

Denote the dataset with missing values by X = (xij), a
matrix of size M × N . In order to utilize the connections
between the rows and columns in X , the dataset needs to
be normalized. Thus, each column (or each row) should be
adjusted such that its mean equals zeros and its variance equals
one. Let B = (bik) be a binary indicator matrix of size M×N
that specifies the missing data locations in X . Thus, if bik = 1
then xik contains a known value and if bik = 0 then xik is a
missing data entry. Figure 1 illustrates X and B.

Given the dataset X and its corresponding indicator matrix
B = (bik), the two initial coarse kernels are constructed based
on the known entries of X . Here, Gaussian kernels denoted
by G

(L)
0 and G

(R)
0 are used to define the normalized kernels

K
(L)
0 and K

(R)
0 . The row smoothing kernel that operates on

the left is defined by

G
(L)
0 = g

(L)
0 (xi, xj) = e

−∥xi−xj∥
2

σ
(L)
0 , xi, xj ∈ X,

where xi and xj are the ith and jth rows of X . The distance
∥xi − xj∥ in the exponent is computed as follows.

∥xi − xj∥2 =

M∑
k=1

bik=bjk=1

|xik − xjk|2.

Therefore, the entries which are included in this distance
contains only indices k for which both xik and xjk are known.
This process results in a full matrix G

(L)
0 .

Next, in order to avoid overfitting, a modification is per-
formed on the kernel G(L)

0 by setting the diagonal of G(L)
0 to

zero. Last, the kernel G(L)
0 is normalized to be the smoothing

operator K
(L)
0 , as each row sum after the normalization is

equal to 1.



The same process is applied for construction of G
(R)
0 . Let

xi and xj be two columns of the matrix X , then the elements
of G(R)

0 are given by

G
(R)
0 = g

(R)
0 (xi, xj) = e

−∥xi−xj∥2

σ
(R)
0 , xi, xj ∈ X.

The distance ∥xi − xj∥ is then computed by ∥xk,i − xk,j∥
where k satisfies bki = bkj = 1. Thus,

∥xi − xj∥2 =

N∑
k=1

bki=bkj=1

∥xki − xkj∥2.

Therefore, the entries which are included in this distance
contains only indices k for which both xki and xkj are known.
A normalization of G

(R)
0 yields the coarse kernel K(R)

0 . We
note that setting a zero diagonal in the left kernel is sufficient
for preventing overfitting, there is no need to set a zero-
diagonal in the column kernels.

In order to convolve the the data matrix X with the kernels,
X needs to be a full matrix. We construct the matrix X⋆

by simply imputing the missing values in X with the mean
value of the known data entries. Denote this mean value by
m⋆ = mean (Xij), where ij are indices that satisfy bij = 1.
Thus, X⋆ is constructed as follows

X⋆
ij =

{
Xij , if bij = 1

m⋆ = mean (Xij) , if bij = 0.
(1)

Then, a coarse approximation of the dataset is computed by

X0 =
1

2
(K

(L)
0 ∗X⋆ +X⋆ ∗K(R)

0 ). (2)

Eq. (2) holds two terms. K(L)
0 ∗X⋆ is a smoothed version

of X⋆ according to the pairwise connections in the row space,
and X⋆ ∗ K

(R)
0 is a smooth version of X⋆ according to the

pairwise connections in the column space.
The error between the known data values and their coarse

approximation from Eq. (2) is computed and stored in err0.
It is calculated based on the difference between the original
data matrix X and the smoothed matrix X0, based only on
known entries for which bij = 1, denoted by

err0 = ∥Xij −X0 ij∥.

Here err0 is computed as the root mean square error.
The first residual is given by D1 = X − X0. The values

of D1 are known for all locations ij that satisfy bij = 1.
The matrix D⋆

1 is then constructed as described in Eq. 1,
the missing values in D1 are replaced by the mean of its
known entries. The kernels K

(L)
1 and K

(R)
1 , which operate on

D⋆
1 from the left and from the right, yield a more accurate

representation of X , denoted by X1. It is given by

X1 = X0 +
1

2
(K

(L)
1 ∗D⋆

1 +D⋆
1 ∗K(R)

1 ).

The construction is carried out in an iterative manner and
the iterations continue for a pre-defined maximal number of

steps. In the l − th iteration the residual Dl = X − Xl−1

is computed, D⋆
l is constructed. A finer representation of X ,

which is given by

Xl = Xl−1 +
1

2
(K

(L)
l ∗D⋆

l +D⋆
l ∗K

(R)
l ).

The error, denoted by errl, is calculated based on the differ-
ence between X and Xl on the known data entries. Since we
set a zero-diaginal in the left smoothing kernels, this process
will not overfit the data, and after several iterations that refine
the approximation of X , the errors will begin to grow. Thus,
the process stops in the iteration the results with the minimal
error values.

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Imputation with two-directional Lapla-
cian pyramids
Input:

• Dataset X of size M ×N , normalized, with missing
values.

• A location indicator matrix B of size M ×N .
• σ

(L)
0 , σ(R)

0 - initial kernel widths.
• lmax - maximum number of iterations.

Output:
• Multi-scale imputed representation of X:

{X0, X1, · · · , Xl}.
• The values in Xl ih for which bij = 0 are the imputed

data for the missing values in X .

1: Construct K(L)
0 and K

(R)
0

2: Construct X⋆.
3: X0 = 1

2 (K
(L)
0 ∗X⋆ +X⋆ ∗K(R)

0 ).
4: Compute the root mean square error err0 and store it in

err[0] = err0
5: for l=1 to lmax do
6: Dl = X −Xl−1.
7: D⋆

l .
8: Xl = Xl−1 + 0.5(K

(L)
l ∗D⋆

l +D⋆
l ∗K

(R)
l ).

9: err[l] = errl
10: end for
11: Determine the scale l for which err[l] reaches its

minimum value.
12: return {X0, X1, · · · , Xl}, where Xl is the final result.

The smoothing procedure that is described in Alg. 1 sets a
similar weight for the row and column kernels. This can be
modified into a more general setting, in which one can control
the contribution of the row and column kernels to the sum. In
this setting Xl is expresses by

Xl = Xl−1 +
(
α
(
K

(L)
l ∗Dl

)
+ (1− α)

(
Dl ∗K(R)

l

))
,

where 0 ≤ α ≤ 1. In this work, α is set using a grid search.
To illustrate the main building blocks of Alg. 1, we plot in

Figure 2 the left and right multiscale kernels of the Housing
dataset that is described in the results section.



Fig. 2. Top: Multiscale left smoothing kernels K
(L)
0 - K

(L)
3 that capture the connections in the row-space of the Housing dataset in different resolutions.

Bottom: Multiscale right smoothing kernels K
(C)
0 - K

(C)
3 that capture the relationship between the 11 features (columns) of the Housing dataset. (Figure

reproduced from [16])

A. Parameter Setting

The initial kernel widths σ
(L)
0 and σ

(R)
0 can be determined

by estimating the pairwise distances—between the rows of X
for the left kernel and between the columns of X for the right
kernel. Here, the following MaxMin heuristic (see [18] ) is
used

σ
(L)
0 = 2 ·max

j
[min
i,i ̸=j

(|xi − xj |)2],

and
σ
(C)
0 = 2 ·max

j
[min
i,i̸=j

(|xi − xj |)2].

The parameter lmax that appears in the for-loop of Alg. 1
determines the maximal number of imputation-approximations
to the dataset. In this work lmax was set to 10. We note that
since the left (row-based) kernels are constructed with a 0-
diagonal, there is no risk of data overfiiting. In practice, the
errors, errl = ||Xij−Xl ij || decrease for several iterations and
then begin to increase (this happens when the kernels scales
become to fine and overfit the data). The errors are kept in
the array err[l] (see Alg. 1) and the number of iterations is
set in accordance to the lowest error. From our experimental
settings, typically, only a small number of iterations is required
for reaching the optimal number of iterations l, thus setting
lmax = 10 is sufficient. To reduce computational complexity,
one may replace the for-loop with an until-loop and stop the
iterations when err[l] < err[l + 1].

III. ENSEMBLES OF MULTI-SCALE KERNEL SMOOTHERS

In this section, we describe how to improve the performance
of Algorithm 1 to work in a multiple imputation setting
instead as a single imputation method. The overall scheme is
based on sampling the original dataset into smaller sub-parts,
then applying Algorithm 1 to each sampled dataset. Figure 3
illustrates this idea.

If the missing value is imputed in more than one subset,
the algorithm leverages the multiple predicted values for
imputation and determines a single value for the missing data

Fig. 3. Illustration of our proposed ensemble imputation technique. Alg. 1 is
applied on subsets of the data. Missing values may reside in several subsets,
resulting with multiple imputation values that are avaraged.

point. Two sampling techniques are proposed and compared.
The first method, denoted by Shuffling and Sampling, uses
the hypergeometric distribution to determine the validity of a
sampled subset; the second is a Naı̈ve approach that shuffles
and splits the data in subsets of smaller size. We denote is as
Naı̈ve Sampling.

In the Shuffling and Sampling approach, a subset is consid-
ered valid if it contains at least kmin data points with missing
values. The probability that a subset of known size contains at
least k instances of relevant missing points is calculated using
the Hypergeometric distribution. kmin is the minimal value
that ensures that this probability is smaller than a pre-defined
value pmax.

IV. MATHEMATICAL FORMULATION AND ERROR
ANALYSIS

The proposed scheme is a relaxation process that in the
continuous case interpolates the data. In order to gain insight
on the error decay rate and size, we analyze the behavior of
the process in terms of a function approximation method. Like
before, X is a dataset of size M × N , and we assume that



f = f(x, y) is a function that is defined on X . In our case
f = X , but for simplicity of notations we carry on with f in
this section.

Assume that f is in L2, i.e.,
∫
x
f2(x)dx ≤ K, for some

constant K. Define the kernels k
(L)
l (x) and k

(R)
l (x) which

approximate a delta function. The kernel k(L)
l operates on f

from the left and k
(R)
l operates on f from the right. The two

kernels satisfy ∫
kl (x) dx = 1,∫
xkl (x) dx = 0,∫
|x|2 |kl (x)| dx ≤ C.

(3)

Note that k(L)
l and k

(R)
l are normalized kernels. In this work

we choose

k
(L)
l = c

(L)
l e−x2/σ

(L)
l , σ

(L)
l = σ

(L)
0 /µl

k
(R)
l = c

(R)
l e−x2/σ

(R)
l , σ

(R)
l = σ

(R)
0 /µl,

(4)

where c
(L)
l and c

(R)
l are normalizing factor for k(L)

l and k
(R)
l

respectively.
The two-sided scheme is a relaxation process for which in

the first step the function f is approximated by

f0 =
1

2

(
K̃

(L)
0 ∗ f + f ∗ K̃(R)

0

)
Define

d1 = f − f0,

then, in the second step f is approximated by

f1 = f0 +
1

2

(
K̃

(L)
0 ∗ d1 + d1 ∗ K̃(R)

0

)
Taking the Fourier transform of k

(L)
l (x) and using the

assumptions in Eq. (3) for k(L)
l (x), we have∣∣∣k̂(L)

1 (ω)− 1
∣∣∣ ≤ C(σ

(L)
l )2∥ω∥22, where

C = 1
2

∫∞
−∞ x2 |k1 (x)| dx.

(5)

Similarly for k(R)
1 .

We first analyze the error in the first step. The error d1(x)
is defined by

d1(x) = f (x)− 1

2

(
K̃

(L)
0 ∗ f + f ∗ K̃(R)

0

)
.

Taking the Fourier transform of d1(x) and using Equation (5)
we have∣∣∣d̂1(ω)∣∣∣ = 1

2

∣∣∣k̂(L)
0 f̂(ω)− f̂(ω) + k̂

(R)
0 f̂(ω)− f̂(ω)

∣∣∣
≤ 1

2

∣∣∣k̂(L)
0 f̂ − f̂(ω)

∣∣∣+ 1
2

∣∣∣f̂(ω)k̂(R)
0 − f̂(ω)

∣∣∣
=

∣∣∣(k̂(L)
0 − 1)f̂(ω)

∣∣∣+ ∣∣∣f̂(ω)(k̂(R)
0 − 1)

∣∣∣ . (6)

First, note that by Taylor expansion of
∣∣∣k̂(R)

0 (ω)
∣∣∣ around

ω = 0, and by using Equation (3) for k(R)
l (x), it follows that

is bounded
∣∣∣k̂(R)

0

∣∣∣ is bounded by a constant. Bounding the two
terms on the right-hand-side of (6), we have∣∣∣k̂(R)

0

∣∣∣ ∣∣∣f̂(ω)∣∣∣ ∣∣∣(k̂(L)
0 − 1)f̂(ω)

∣∣∣ ≤ C(σ
(L)
0 )2∥ω∥22

∣∣∣f̂(ω)∣∣∣ (7)

and ∣∣∣f̂(ω)(k̂(R)
0 − 1)

∣∣∣ ≤ C(σ
(R)
0 )2∥ω∥22

∣∣∣f̂(ω)∣∣∣ . (8)

Here C denotes a universal constant.
Combining Equations (6), (8) and (7), we have∣∣∣d̂1(ω)∣∣∣ ≤ C((σ

(R)
0 )2 + (σ

(L)
0 )2)∥ω∥22

∣∣∣f̂(ω)∣∣∣ . (9)

For simplicity we assume that σ(L)
0 and σ

(R)
0 are bounded by

σ0. Thus, ∣∣∣d̂1(ω)∣∣∣ ≤ Cσ2
0∥ω∥22

∣∣∣f̂(ω)∣∣∣ . (10)

The error in the second step is

d2 = d1 −
1

2

(
K̃

(L)
0 ∗ d1 + d1 ∗ K̃(R)

0

)
(11)

Taking the Fourier transform of Equation (11) yields∣∣∣d̂2(ω)∣∣∣ = ∣∣∣k̂(L)
1 d̂1(ω)(ω)k̂

(R)
1 − d̂1(ω)

∣∣∣ . (12)

It may be bounded as in Equation (10) by∣∣∣d̂2(ω)∣∣∣ ≤ C((σ
(R)
1 )2 + (σ

(L)
1 )2)∥ω∥22

∣∣∣d̂1(ω)∣∣∣
≤ C(σ0)

2(σ0/µ)
2∥ω∥42|f̂(ω)|.

(13)

For the lth level the error is bounded by∣∣∣d̂l(ω)∣∣∣ ≤ Cσ2
0

(
σ2
0

µl

)l−1

∥ω∥2l2
∣∣∣f̂(ω)∣∣∣ . (14)

By Parseval’s equality we obtain

∥dl(x)∥L2 ≤ Cσ2
0

(
σ2
0

µl

)l−1

∥f(x)∥2l,2 . (15)

Thus, the error for the two-sided smoothing procedure as
well decays faster than any algebraic rate.

V. EXPERIMENTAL RESULTS

Experimental results evaluate the proposed multiple imputa-
tion approach on four public datasets from the UCI repository.
The datasets are Ecoly, Housing, Wine Quality and Frogs.
Table I describes their properties.

TABLE I
DESCRIPTION OF THE DATASETS

Data Set Num. of rows Num. of Columns
Ecoly 366 7

Housing 506 13
Wine 4,898 11
Frogs 7,195 21

In addition, we consider three missingness mechanism (as
classified by Rubin, 1976 [19]): missing at random (MAR),
missing completely at random (MCAR), and missing not at
random (MNAR). Missing at random (MAR) occurs when



the probability of missing data for a specific variable in a
dataset does not depend on the values of that variable itself,
but on the values of other observed variables in the dataset.
Thus, the pattern of missingness is traceable or predictable
from other observed variables in the dataset [20]. Missing
completely at random (MCAR) is a private case of MAR that
occurs when the probability of missingness does not depend
on both observed and unobserved data [21]. This effectively
implies that the causes of the missing data are unrelated to the
data. If neither MCAR nor MAR holds, the data is missing not
at random (MNAR). MNAR means that the probability that a
variable value is missing depends on the missing data values
themselves [22].

The above three missingness mechanisms are considered
in the results, which are evaluated in terms of Mean Squared
Error (MSE). The percentage of missing values in each dataset
is noted in each experiment. We compared our results with
several imputation techniques including mean substitution
(mean), most frequent value substitution (freq), Scikit-learn
iterative imputer, inspired by the Multiple Imputation by
Chained Equations (MICE) [25], and the proposed method in
a single imputation setting, without the ensembles. We denote
our single imputation technique (Alg. 1) by Single MSSI,
where MSS stands for Multi-Scale Smoothing Imputation.
Out multi-imputation versions are denoted by MSSI-SS and
MSSI-NS, where MSSI-SS denoted the Shuffling and Sampling
approach and MSSI-NS uses the Naive shuffling approach.

A. MAR Imputation Results

The MAR generation procedure follows the mechanism
described by Santos et al. (2019) [24]. For each variable
chosen to be unobserved, the method considers two variables:
the variable chosen to include missing values (the unobserved
variable), and another observed variable that determines the
unobserved variable missingness pattern. The method includes
the following steps. First, the user chooses the number of
missing variables and the threshold percentile cut-off. This
combination determines the dataset’s total number of missing
values, so it should be selected carefully. This step forms a
pair of unobserved and observed variables. The unobserved
variable is chosen by drawing one variable from all the
variables in the dataset. Then, the most correlated variable
(different from the drawn one) is chosen as the corresponding
observed variable. This procedure is repeated until the desired
number of missing variables is reached. Each time the unob-
served variable must be a new variable that was not already
chosen to be observed or unobserved in the previous pairs.
The corresponding observed variable cannot be a variable
that was chosen to be unobserved in the current or prior
iterations. Finally, values in the observed variables that exceed
the chosen threshold percentile cut-off are identified for each
pair of variables. The corresponding values in the unobserved
variables are replaced with missing values. Table II displays
the results, with the lowest errors marked in bold. It can be
seen that except for the Wine dataset, our proposed method
performs well.

TABLE II
MAR IMPUTATION RESULTS (MSE)

Dataset Mean Freq. MICE Single MSSI MSSI
(% missing) MSSI SS NS
Ecoly (5.7%) 1.48 2.88 0.47 0.38 0.31 0.41

Housing (5.38%) 1.47 3.36 3.04 1.23 1.03 1.06
Wine (5.24%) 1.12 1.44 0.79 0.82 0.84 0.84
Frog (20%) 1.06 35.93 0.95 0.62 0.6 0.59

B. MCAR Imputation Results

MCAR generation is straightforward and intuitive. Random
elements in the original observed dataset are replaced with
missing values to create an unobserved MCAR dataset. The
proportion of total missing values is determined by a parameter
that the user sets. Table III plots the results. It can be seen
that our proposed method has an advantage when processing
datasets with this type of missingness. This is due to the
connections both in the row and column space as well as the
iterative refinement.

TABLE III
MCAR IMPUTATION RESULTS (MSE)

Dataset Mean Freq. MICE Single MSSI MSSI
(% missing) MSSI SS NS
Ecoly (5%) 0.66 0.63 1.42 0.34 0.33 0.41

Housing (5%) 1.04 1.75 0.55 0.39 0.39 0.38
Wine (5%) 0.98 1.25 0.61 0.48 0.49 0.48
Frog (20%) 0.99 21.65 0.23 0.19 0.2 0.2

C. MNAR Imputation Results

MANR generation involves selecting a proportion of unob-
served variables in the new dataset [23]. For example, if the
original dataset has 100 columns and a proportion of 20% is
chosen, then 20 columns in the new dataset will be designated
as unobserved variables. Next, a random percentile cut-off
value between 30% and 60% is drawn for each column, and
all values below this cut-off percentile in the relevant column
are replaced with missing values. For example, if the cut-off
point for a variable is 50%, all values lower than the median
are removed. Results are presented in Table IV. It is noticeable
that the MICE method struggles with this type of missingness
pattern, while our proposed method performs well.

TABLE IV
MNAR IMPUTATION RESULTS (MSE)

Dataset Mean Freq. MICE Single MSSI MSSI
(% missing) MSSI SS NS

Ecoly (27.2%) 1.48 1.39 4.21 1.26 1.25 1.33
Housing (22.4%) 1.18 1.86 1.25 0.9 0.91 0.92

Wine (15.5%) 1.26 1.22 1.26 1.17 1.07 1.07
Frog (20.5%) 0.83 99.67 4.83 0.88 0.82 0.82

VI. CONCLUSIONS

This work proposes a multi-scale smoothing approach for
modeling and imputing missing data in a dataset. The proposed



method is inspired by the multiple imputation approach as
well the iterative regression. Its strength lies in considering
the geometric structure of the row and column spaces, using
kernels of decreasing widths. We provide error analysis of
the method, suggesting that also in real data applications we
expect the error to decrease fast. Another advantage of the
method is that it does not suffer of convergence risks, and
will always result with an approximated version of the data.
The iterative nature of the approximation bypasses the need to
find an optimal single bandwidth for the smoothing kernels,
and also, as a byproduct of the construction derives a multi-
scale imputed representation of the dataset.

Two methods were introduced and examined for creating
sub-datasets. Naı̈ve Shuffling that splits the dataset in a naive
way to equal parts and Shuffling and sampling, which creates
subsets that include sufficient missing points, determined using
the hypergeometric distribution.

To evaluate the effectiveness of the proposed methods, ex-
periments were conducted on several datasets with different di-
mensions and three different missingness mechanisms: missing
at random (MAR), missing completely at random (MCAR),
and not missing at random (MNAR). The mean squared error
of the methods’ imputed values was calculated and compared
to other benchmark impute methods. The proposed method
show stable and low error results across all setting, typically
with a slight advantage to the ensemble approach.

Even though recent research by Le Morvan and Varoquaux
[26] suggest that accurate imputation methods may play a
minor role when strong predictive models are used, we believe
that the suggested construction may be beneficial for other
machine learning tasks. For example, the proposed approached
may be applied to detect anomalies in tabular datasets, based
on the difference between the smooth approximation of the
data and the original data. Moreover, it may be considered
for subset selection of large training sets, where the goal is to
identify complementary subsets that characterize the set both
in the instance and feature space.
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