
BN-Pool: a Bayesian Nonparametric Approach to Graph Pooling

Daniele Castellana 1, Filippo Maria Bianchi 2,3

1 Dept. of Statistics, Computer Science and Applications, Università degli Studi di Firenze
2 Dept. of Mathematics and Statistics, UiT the Arctic University of Norway

3 NORCE, Norwegian Research Centre AS
daniele.castellana@unifi.it, filippo.m.bianchi@uit.no

Abstract

We introduce BN-Pool, the first clustering-based
pooling method for Graph Neural Networks
(GNNs) that adaptively determines the number
of supernodes in a coarsened graph. By leveraging
a Bayesian non-parametric framework, BN-Pool
employs a generative model capable of partitioning
graph nodes into an unbounded number of clus-
ters. During training, we learn the node-to-cluster
assignments by combining the supervised loss of
the downstream task with an unsupervised aux-
iliary term, which encourages the reconstruction
of the original graph topology while penalizing
unnecessary proliferation of clusters. This adaptive
strategy allows BN-Pool to automatically discover
an optimal coarsening level, offering enhanced flex-
ibility and removing the need to specify sensitive
pooling ratios. We show that BN-Pool achieves
superior performance across diverse benchmarks.

1 Introduction

Graph Neural Networks (GNNs) have emerged as
powerful tools to solve various tasks involving graph-
structured data, such as node classification, graph clas-
sification, and link prediction. Despite their success,
one of the persistent challenges in GNNs is efficiently
handling large-scale graphs while preserving their struc-
tural and feature information.

Pooling is a widely used technique in deep learning
architectures such as Convolutional Neural Networks
(CNNs) to progressively distill global properties from
the data by summarizing spatially contiguous informa-
tion. Similarly, GNNs use pooling layers to summarize
the information on the graph. Of particular interest to
us are the pooling layers that gradually extract global
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graph properties through a hierarchy of coarsened
graphs. Those, are crucial for building deep GNNs
for tasks such as graph classification [1], node classifi-
cation [2, 3], graph matching [4], and spatio-temporal
forcasting [5, 6].

While pooling in GNNs serves a similar purpose as
in CNNs, its implementation is more challenging due
to the irregular and non-Euclidean structure of the
graphs. Popular (and often better performing [7]) graph
pooling methods generate coarsened graphs by aggre-
gating nodes into clusters. However, these approaches
typically require a predefined number of clusters, i.e.,
nodes in the coarsened graph, which is difficult to set in
advance. Moreover, enforcing the same fixed number
of clusters across all graphs, regardless of their original
size, results in all coarsened graphs having the same
number of nodes. This rigidity hinders the ability of
the model to adapt dynamically to the graph structure,
resulting in redundancies and reducing its effectiveness
in datasets with significant variability in the size of the
graphs.

To overcome these limitations, we introduce Bayesian
Non-parametric Pooling (BN-Pool): a novel pooling
technique for GNN based on a Bayesian Non-Parametric
(BNP) approach. Our method defines a generative
process for the adjacency matrix of the input graph
where the probability of having a link between two
nodes depends on their cluster membership, ensuring
that clusters reflect the graph topology. Thanks to the
BNP approach, the number of clusters is not fixed in
advance but is adapted to the input graph. Within
our Bayesian framework, the clustering function is the
posterior of the cluster membership given the input
graph. In this work, we approximate the posterior by
employing a GNN; on the one hand, this permits to
capture complex relations that usually appear between
the hidden and the observable variables; on the other
hand, we can condition the posterior on the node (and
potentially edge) features, and on the downstream task.
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The GNN parameters are trained by optimizing two
complementary objectives: one defined by the losses
of the downstream task (e.g., graph classification), the
other defined by an unsupervised auxiliary loss that
derives from the probabilistic nature of the model.
In the following sections, we will detail the theoretical

foundations of our approach, demonstrate its efficacy
through empirical evaluation, and compare it against
state-of-the-art methods to highlight its unique advan-
tages.

2 Background

2.1 Bayesian non-parametric
The BNP framework [8] aims to build non-parametric
models by applying Bayesian techniques. The term
non-parametric indicates the ability of a model to adapt
its size (i.e., the number of parameters) directly to data.
In contrast, in the parametric approach the model size is
fixed in advance by setting some hyper-parameters.
The BNP literature relevant to our work relates to

the families of Dirichlet Process (DP) [9]. In its most
essential definition, a DP is a stochastic process whose
samples are categorical distributions of infinite size.
Thus, in the same way as the Dirichlet distribution is the
conjugate prior for the categorical distribution, the DP
is the conjugate prior for infinite discrete distributions.
A classical usage of DP is in the definition of mixture

models which allow an infinite number of components,
where the DP is used as the prior distribution over the
mixture weights. The key of DP is its clusteristation
property: even if there is an infinite number of com-
ponents available, the DP tends to use the components
that have been already used. We refer the reader to
Appendix A for an introduction to the DP.

2.2 Graph Neural Networks
Let G = (V, E) be a graph with node features X0 ∈
RN×F , where |V| = N . Each row x0

i ∈ RF of the ma-
trix X0 represents the initial node feature of the node
i, ∀i = 1, . . . , N . Through the MP layers, a GNN im-
plements a local computational mechanism to process
graphs [10]. Specifically, each feature vector xv is up-
dated by combining the features of the neighboring
nodes. After l iterations, xl

v embeds both the structural
information and the content of the nodes in the l–hop
neighborhood of v. With enough iterations, the feature
vectors can be used to classify the nodes or the entire
graph. More rigorously, the output of the l-th layer of a
MP-GNN is:

xl
v = COMB(l)

(
xl−1
v , AGGR(l)({xl−1

u , u ∈ N [v]})
)

(1)

where AGGR(l) is a function that aggregates the node
features from the neighborhood N [v] at the (l − 1)–th

iteration, and COMB(l) is a function that combines the
own features with those of the neighbors.

The most simple GNN architectures are “flat” and
consist of a stack of Message Passing (MP) layers fol-
lowed by a final readout [11]. For graph-level tasks,
such as graph classification and regression, the readout
includes a global pooling layer that combines all the
node features at once by taking e.g.,their sum or aver-
age. Such an aggressive pooling operation often fails to
effectively extract the global graph properties necessary
for the downstream task. On the other hand, GNN
architectures that alternate MP with graph pooling lay-
ers can gradually distill information into “hierarchical”
graph representations.

2.3 Graph pooling

Graph pooling methods can be broadly described
through Select-Reduce-Connect (SRC), which provides
a general framework to describe different graph pooling
operators [12]. According to SRC, a pooling operator,
denoted as POOL : (A,X) → (Ap,Xp), is decomposed
into three sub-operators:

• Select (SEL): maps the original nodes of the graph to
a reduced set of nodes, called supernodes. Often, the
mapping can be represented by a selection matrix
S ∈ RN×K , where N and K are the number of nodes
and supernodes, respectively.

• Reduce (RED): generates the features Xp ∈ RK×F of
the supernodes based on the selection matrix and
the original node features.

• Connect (CON): constructs the new adjacency matrix
Ap ∈ RK×K

≥0 based on the selection matrix and the
original topology.

Different pooling methods are obtained by a specific
implementation of these operators and can be broadly
categorized into three main families: score-based, one-
every-K, and soft-clustering methods.

Score-Based methods compute a score for each node
using a trainable function in their SEL operator. Nodes
with the highest scores become the supernodes of the
pooled graph. Representatives such as Top-k Pooling
(Top-k) [2, 13], ASAPool [14], SAGPool [15], PanPool [3],
TAPool [16], CGIPool [17], and IPool [18] primarily
differ in how they compute the scores or in the auxiliary
tasks they optimize to improve the quality of the pooled
graph. These methods are computationally efficient and
can dynamically adapt the size of the pooled graph, e.g.,,
Ki = κNi, where κ is the pooling ratio and Ni and Ki

are the sizes of the i-th graph before and after pooling.
Score-based methods tend to retain neighbouring nodes
that have similar features. As a result, entire parts of the
graph are under-represented after pooling, reducing
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the performance in tasks where all the graph structure
should be preserved.
One-Every-K methods pool the graph by uniformly

subsampling nodes, extending the concept of one-every-
K to irregular graph structures. They are typically
efficient and perform pooling by optimizing graph-
theoretical objectives, such as spectral clustering [19],
maxcut [20], and maximal independent sets [21]. How-
ever, these methods lack flexibility because their SEL
operator neither accounts for node or edge features
nor can be influenced by the downstream task’s loss.
Despite they can adapt the size of the pooled graph Ki

to the original graph size Ni, they cannot specify the
pooling ratio κ explicitly, which is determined a-priori
by the graph-theoretical objective.
Soft-Clustering methods have a SEL operator that com-

putes a soft-clustering matrix S, which assigns each
node to multiple supernodes with different degrees
of membership. Representatives such as Diffpool [22],
MinCut Pool (MinCut) [23], and Structpool [24], lever-
age flexible trainable functions guided by auxiliary
losses to compute the soft assignments from the node
features. The auxiliary losses ensure that the partition is
consistent with the graph topology and that the clusters
are well-formed, e.g.,, the assignments are sharp and
the clusters balanced. While soft-clustering methods
generally achieve high performance due to their flexi-
bility and ability to retain information from the entire
graph, they face a primary limitation. They require to
predefine the size K of every pooled graphs, which is
fixed for each graph i regardless of its size Ni. A typical
choice is to set K = κN̄ , where N̄ is the average size
of all the graphs in the dataset. Clearly, this might not
work well in datasets where the graphs’ size varies too
much, especially if there are graphs where Ni < κN̄ . In
those cases, the pooling operator expands rather than
coarsening the graph, which goes against the principle
of graph pooling. Finally, while the possibility of spec-
ifying the pooling ratio κ offers a greater flexibility to
soft-clustering and score-based methods, it might be a
difficult hyperparameter to tune.

3 Method

We propose a novel soft-clustering pooling operator
whose SEL function addresses the main drawbacks of
existing soft-clustering methods by learning, for each
graph i, a pooled graph with a variable number of
supernodes Ki. We refer to our proposal as BN-Pool
since it is grounded in the Bayesian non-parametric
theory. In the following, we present the method by
considering only a single graph to ease the notation.
BN-Pool assumes that the adjacency matrix A of the

input graph is generated by a process similar to the
Stochastic Block Model (SBM): each node u is associated
with a vector πu whose entries indicate the probability

that u belongs to a given cluster. The edges are gener-
ated according to a block matrix K whose entry Kij

represents the unnormalised log-probability of occur-
rence of a directed edge from a node in cluster i to a
node in cluster j. Differently from the SBM, we relax
the requirement of specifying the number of clusters in
advance and leverage the DP to define a prior over an
infinite number of clusters. It is worth mentioning that,
even if there is an infinite number of clusters, only a
"small" number of them is used due to the clusterisation
property of the DP (see Appendix A for details).

Figure 1: Graphical representation of BN-Pool in plate no-
tation. The orange dashed arrow represents a deterministic
computation.

By exploiting the stick-breaking construction of DPs,
we define the generative process of BN-Pool as:

Kij ∼ p(Kij) =

{N (µK , σK) if i = j

N (−µK , σK) if i ̸= j
, (2)

π′
ui ∼ p(π′

ui) = Beta(1, αDP), (3)

πui = π′
ui

i−1∏
j=1

(1− π′
uj), puv = σ(π⊤

u Kπv), (4)

Auv ∼ p(Auv) = Bernoulli(puv), (5)
where u, v ∈ V are nodes in the input graph, i, j ∈ N
are cluster indexes, and σ(·) is the sigmoid function;
the hyper-parameters αDP ∈ R+, µK ∈ R+, σK ∈ R+

define the shape of the prior distributions. The prior
distribution on the matrix K defined in equation 2
encodes our assumption that most of the edges link
nodes of the same group. The generative process is
schematized in Figure 1.
The BNP setting makes the posterior computation in-

tractable and approximations are required to perform
training. We rely on a truncated variational approxi-
mation of the posterior [25]: even if there is an infinite
number of clusters, we truncate the posterior by con-
sidering a finite value C representing the maximum
number of clusters. It is worth highlighting that this
does not imply that the model has a fixed number of
clusters but, rather, that the model will choose a suitable
number of non-empty (i.e., active) clusters Ki < C for
the i-th graph.

3
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Figure 2: The SEL operation of and the components of the auxiliary loss.

We follow the classical mean-field approximation1 and
define two variational distributions: one to model the
posterior of the stick fractions π′, and one to model
the posterior of the model parameter K. Note that the
cluster assignment vector π is fully determined by the
stick-breaking construction given the stick fractions π′.
The posterior approximation can be detailed as follows:

q(π′
ui) = Beta(α̃ui, β̃vi), (6)

q(Kij) = N (µ̃ij , ϵ), (7)

where α̃ui, β̃ui ∈ R+ for all u ∈ V, i ∈ {1, . . . , C}, and
µ̃ij for all i, j ∈ {1, . . . , C} are the variational parame-
ters. The value of ϵ is fixed a priori and it is not optimised
during the training.

While µ̃ij are free parameters that we optimize directly,
we employ a GNN with parameters Θ to estimate α̃ and
β̃:

α̃, β̃ = GNNΘ(X,A). (8)

On the one hand, the GNN allows for representing com-
plex relations between hidden and observable variables
that usually appear in the posterior distribution. On the
other hand, we can condition the posterior on the graph
topology, on the node (and potentially edge) features,
and on the downstream task at hand that drives the
GNN optimization.

We summarize the proposed architecture in Figure
2: the GNN employed to estimate the posterior acts
as the encoder in the classic Variational Auto-Encoder
(VAE) approach, while the SBM is the decoder which
reconstructs the adjacency matrix of the input graph.
The soft assignments in S are the latent representation
πu for each node u, which follow a DP by allowing an
infinite number of clusters.

1It assumes the variational distribution factorises over the
latent variables: p(π′,K|X) ≈ q(π′,K) ≈ q(π′)q(K).

3.1 Training Procedure

The parameters {Θ, µ̃} are learned by maximising the
Evidence Lower-BOund (ELBO):

log p(A) ≥
∑
u

∑
v

Eq(π′)q(K) [log p(Auv | π,K)]︸ ︷︷ ︸
−Lrec

−
∑
u

∑
i

DKL(q(π
′
ui) | p(π′

ui))︸ ︷︷ ︸
−Lπ

−
∑
i

∑
j

DKL(q(Kij) | p(Kij))︸ ︷︷ ︸
−LK

.

(9)

The first term in equation 9 is the reconstruction loss that
measures how good is the model at reconstructing the
adjacency matrix. The last two terms instead measure
the distances between the prior and the variational dis-
tributions, and they act as a regularisation. While the
reconstruction loss Lrec has a straightforward interpre-
tation, we can think of Lπ as the total cost to pay to
have a certain number of clusters active. Hence, Lπ

reflects the clusterisation property of the DP in reusing
non-empty clusters. On the other hand, LK penalizes
the discrepancy from the connectivity across clusters
described by the SBM prior.
In practice, instead of maximising the ELBO in Eq. 9,

we train the model by minimising the following loss:

Laux =
1

N
Lrec + η

1

N
Lπ +

1

N
LK , (10)

where N is the number of nodes in the input graph and
it is used to rescale the losses, while η is a hyperparame-
ter which balances the contrasting effect of Lrec and Lπ .
The interplay between all the loss terms is crucial for
an effective adaptive nonparametric method. The nor-
malization and scaling parameters avoid a dominance
of the KL divergence and have already been applied
on VAEs [26, 27]. We refer to the loss in equation 10 as
auxiliary since during the pooling it will be combined
with the supervised loss of the downstream task.
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The training is performed by employing the Stochas-
tic Gradient Variational Bayes (SGVB) framework [28],
where the expectation in the reconstruction loss is ap-
proximated with a Monte Carlo estimate of the binary
cross-entropy between the true edges and the probabili-
ties predicted by the model:

Lrec ≈
T∑

t=1

∑
u

∑
v

−Auv log p
t
uv−(1−Auv) log(1−ptuv),

(11)
where T is the number of samples used for the Monte
Carlo approximation and ptuv = σ(

∑
i

∑
j π

t
uiµ̃ijπ

t
vj)

being the values πt
u and πt

v the t-th samples of the soft
assignments for the node u and v. The sampling step
to approximate Lrec is not differentiable and prevents
the gradient to be back-propagated to the GNN param-
eters Θ. A common approach to solve this issue is the
reparametrisation trick [28], which, however, cannot
be applied to the Beta distribution [29]. In BN-Pool,
we back-propagate the information by approximating
the pathwise gradient of the sampled values w.r.t. the
distribution parameters2 [30].
To reduce the stochasticity of the approximation, we

assume that the variational distribution q(K) has a low
variance (i.e., ε → 0 in Eq. 7) and directly use the vari-
ational parameter µ̃ rather than sampling the cluster
connectivity from its variational distribution. Finally,
we initialise the GNN parameters Θ by using the default
initialisation of the backend, while the variational pa-
rameter µ̃ of the cluster connectivity matrix is initialised
by setting the element on-diagonal (off-diagonal) equals
to ηK (−ηK), where ηK is an hyperparameter.

3.2 Prior Hyperparameters Interpretation

To fully define BN-Pool model, we have to specify three
hyperparameters: αDP, µK and σK . The probabilistic
nature of our method allows for a direct interpretation
that facilitates their tuning.
The value of αDP ∈ R+ defines the shape of the prior

over the cluster assignments; in particular, it specifies
the concentration of the DP. To understand the effect
of αDP, we recall that the loss Lπ is the cost to pay to
have a certain number of clusters active. The value
αDP is inversely proportional to the price to activate a
new cluster: low values force the model to use a few
clusters (only one in the extreme case). Conversely,
higher values do not penalise the model when it uses
more clusters to reduce the reconstruction loss. Note
that in practice we truncate the posterior to at most C
clusters, meaning that too high values of αDP create
degenerate solutions where the last cluster is always
used.
2This approximation is already implemented in the PyTorch
library. See Appendix B for more details about our implemen-
tation.

The other two hyperparameters µK ∈ R+ and σK ∈
R+ specify the prior over the cluster connectivity matrix
K which affects the reconstruction loss. Again, the most
intuitive way to understand the effect of K is in terms
of costs: if the value Kij is positive (negative), the price
of creating an edge between a node in cluster i and a
node in cluster j is low (high). Thus, to encode our prior
belief that most of the edges appear between nodes in
the same cluster, we impose that the elements on the
diagonal are positives with value µK (i.e., intra-cluster
edges are cheap), while the off-diagonal elements are
negatives with value −µK (i.e., inter-cluster edges are
costly). The hyperparameter σK controls the strength
of the prior: the lower the more the posterior matches
the prior rather than the data.

The values of µK and σK also affect the number of
active clusters. For example, the degenerate solution
that assigns all the nodes to the first cluster satisfies the
clusterisation property of the DP. However, by refer-
ring at Eq. 11, this means paying − log(1 − σ(µ̃11)) =
− log σ(−µ̃11) every time Auv = 0. If the posterior
matches our prior (i.e., µ̃11 ≈ µK), this results in a great
cost since µK ≫ 0 implies − log σ(−µK) ≫ 0; thus, the
model will likely prefer to reduce Lrec at the price of
having more clusters, i.e., a larger Lπ .

Finally, we note that while the other hyperparameters
(truncation level C, number of samples T and initialisa-
tion of the variational parameters Θ and ηK) influence
the training procedure, they do not affect the model
definition.

3.3 SEL, RED, CON

We conclude by casting BN-Pool into the SRC frame-
work. For each graph i the SEL operator generates a
cluster assignment matrixSi ∈ RN×C where the firstKi

columns contain non-zero values. The entry suj = πuj

represents the membership of node u to cluster j. The
RED and CON functions are implemented as in other soft-
clustering methods. The RED function is Xp = S⊤X ,
where X is the feature matrix of the original graph,
and Xp are the features of the pooled graph. The CON
function is implemented as Ãp = S⊤AS. Following
[23], we set the diagonal elements of Ãp to zero to pre-
vent that self-loops dominate the propagation in the MP
layers after pooling and we symmetrically normalize it
by the nodes’ degree: Ap = D̃

−1/2
p ÃpD̃

−1/2
p .

4 Related work

BN-Pool belongs to the family of Soft-Clustering pooling
methods and the closest approach is Diffpool [22], which
employs an auxiliary loss ∥A − SS⊤∥F to align the
assignments to the graph topology. In this work, we go
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beyond the formulation of such a simple loss and define
a whole generative process for the adjacency matrix.

Similar to our work is the Dirichlet Graph Variational
Auto-Encoder (DGVAE) [31], which defines a VAE with
a Dirichlet prior over the latent variables to cluster
graph nodes. We extends DGVAE in two ways. First,
we define a more flexible generative process for the
adjacency matrix thanks to the block matrix K. Second,
we allow an infinite number of clusters by specifying
a DP prior over the latent variables. Moreover, we do
not rely on the Laplace approximation of the Dirichlet
distribution, whose behaviour is similar to a Gaussian
prior [32].

The Stick-Breaking Variational Auto-Encoder (SB-VAE)
[33] shares our idea of specifying a non-parametric prior
over the hidden variables by using a DP prior that lever-
ages the stick-breaking construction, but does not focus
on graphs. We also employ a different approximation
of the posterior, which is based on pathwise gradients
rather than the Kumaraswamy distribution.

Another work which shares some similarities with
our method is [34], which introduces a sparse VAE for
overlapping SBM. They also allow an infinite number
of clusters, but use a different nonparametric prior: the
Indian Buffet Process (IBP) [35]. The IBP is suitable to
model multiple cluster membership, i.e., a node can
belong to more than one cluster, which is not desirable
in the context of pooling. Moreover, Mehta et al. define
another dense latent variable with a Gaussian prior for
each node to gain more flexibility during the generation
process of the adjacency matrix. Instead, in BN-Pool all
the information useful for the generation is encoded in
the soft cluster assignments S.

5 Experiments

The purpose of our experiments is twofold. Being BN-
Pool the first BNP pooling method, we first analyse
its ability in detecting communities on a single graph.
Then, we test the effectiveness of BN-Pool in GNNs
for graph classification, showing that it can achieve
competitive performance w.r.t. other pooling methods.
In all experiments, we use very simple GNN models to
better appreciate the differences between the pooling
methods. While GNNs with larger capacity can achieve
SOTA performance, in a more complex model is harder
to disentangle the actual contribution of the pooling
method. Details about the architectures, the training
procedures, and the datasets are in Appendices C and
D. The code is available online3.

3 https://github.com/NGMLGroup/
Bayesian-Nonparametric-Graph-Pooling

5.1 Community detection

This task consists in learning a partition of the graph
nodes in an unsupervised fashion, only based on the
node features and the graph topology. The architecture
used for clustering consists of a stack of MP layers that
generate the feature vectors X ′. Those are processed by
the SEL operator that produces the cluster assignments
S. Since clustering is an unsupervised task, the GNN is
trained by minimizing only the auxiliary losses. Even
if our primary focus is on graph pooling, this experi-
ment allows us to evaluate the consistency between the
node labels y and the cluster assignments learned by
minimizing only the auxiliary losses.

Clustering performance is commonly measured with
Normalized Mutual Information (NMI), Completeness,
and Homogeneity scores, which only work with hard
cluster assignments. While the latter can be obtained by
taking the argmax of a soft assignment, the discretisa-
tion process can discard useful information. Consider
for example a case where two nodes u and v have as-
signment vectors su = [.0, .5, .5, .0] and sv = [0, .5, 0, .5].
Taking the argmax would map both nodes in the 2nd
cluster, even if the two assignment vectors are clearly
distinguishable. This problem is exacerbated when we
do not fix the number of cluster K equal to the true
number of classes; in this case, there is no direct cor-
respondence between the clusters and the classes and
nothing prevents different classes to be represented by
partially overlapping assignment vectors with multiple
non-zero entries.

Therefore, to measure the agreement between S and
y we first consider the cosine similarity between the
cluster assignments and the one-hot representation of
the node labels:

COS =

∑
i,j

[
SS⊤ ⊙ Y Y ⊤]

i,j√∑
i,j [SS

⊤]i,j +
∑

i,j [Y Y ⊤]i,j

(12)

where Y = one-hot(y). As a second measure, we
consider the accuracy (ACC) obtained by training a
simple logistic regression classifier to predict y from S.

We compare the performance of BN-Pool with the as-
signments obtained by four other soft-clustering pooling
methods, DiffPool [22], MinCut [23], Deep Modularity
Network (DMoN) [36], and Just-balance Graph Neural
Network (JBGNN) [37], which are optimized by mini-
mizing their own auxiliary losses. Importantly, we note
that the other methods leverage supervised informa-
tion by setting the number of clusters K equal to the
number of node classes, while BN-Pool is completely
unsupervised.

As datasets, we consider Community, a synthetic
dataset generated from a SBM, and four real-world
citation networks. Table 1 reports the results and show
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Table 1: Mean and standard deviations of ACC and COS for vertex clustering.

Method Community Cora Citeseer Pubmed DBLP
ACC COS ACC COS ACC COS ACC COS ACC COS

DiffPool 81.9±1.3 62.9±0.6 50.4±1.1 43.3±0.0 37.9±1.4 42.4±0.0 52.4±0.7 59.8±0.0 49.5±4.9 57.4±0.0

MinCut Pool 97.1±0.3 94.3±0.5 57.0±2.1 40.1±1.8 54.3±5.0 36.9±3.8 61.3±0.2 46.6±0.3 69.2±3.4 52.5±3.9

DMoN 96.2±0.9 92.5±1.6 57.9±3.8 40.1±2.3 50.7±2.4 34.6±1.6 59.6±1.4 45.5±0.7 63.7±3.2 45.4±1.3

JBGNN 83.9±8.7 83.0±8.9 55.4±2.4 39.0±2.8 48.1±5.0 36.1±3.3 55.8±3.8 44.6±2.0 68.6±1.8 53.0±4.4

BN-Pool 98.5±0.5 83.0±1.4 66.8±1.0 47.7±1.3 47.9±1.7 37.8±0.3 81.3±0.5 62.5±0.7 75.2±0.7 58.5±0.7

(a) BN-Pool (b) MinCut

Figure 3: Clusters found on a graph with five communities.

that, despite not knowing the real number of classes,
BN-Pool achieves good clustering performance.

Figure 3a shows a typical situation where BN-Pool
splits a community in two. This happens if there are
a few edges within the community and increasing K
yield more compact clusters. This cannot occur in other
soft-clustering methods such as MinCut. The latter
always find the same pre-defined number of clusters
(K = 5 in this case, see Figure 3b) but create clusters
that are more spurious.

Figure 4 shows the original adjacency matrix of the
Cora dataset, a visualization of the class labels (Y Y ⊤),
and the adjacency matrix reconstruction SS⊤, where
S is the assignment matrix obtained by BN-Pool and
MinCut, respectively. While the SS⊤ produced by BN-
Pool follows more closely the actual sparsity pattern
of the adjacency matrix, in MinCut SS⊤ has a block
structure. This difference is explained by the different
optimisation objectives: while BN-Pool aims to recon-
struct the whole adjacency matrix, MinCut recover the
communities by cutting the smallest number of edges.
In addition, MinCut uses a regularization to encourage
clusters to have the same size. This makes it difficult to
isolate the smallest clusters (bottom-right and top-left
part of the matrix) that, instead, are distinguishable in
BN-Pool. Given that in Cora the average edge density
between nodes of the same class is only 0.001, a natural
way for BN-Pool to lower Lrec is to activate new clus-
ters and generate assignments with multiple non-zero,

(a) Original adj. A (b) Class labels Y Y ⊤

(c) BN-Pool SS⊤ (d) MinCut SS⊤

Figure 4: Adjacency matrix of Cora, class labels visualization,
and adjacency matrix reconstruction by BN-Pool and MinCut.

yet low, membership values. See Appendix E for a
discussion.

5.2 Graph classification

In graph classification a class label yi is assigned to the
i-th graph {Ai,Xi}. Differently from the community
detection task, here the GNN is optimized by jointly
minimizing the cross-entropy loss between true and
predicted class labels and the auxiliary loss Laux. For
this task, we compare also against Score-Based and
One-Every-K pooling operators, such as Top-k, Edge-
Contraction Pooling (ECPool), k Maximal Independent
Sets Pooling (k-MIS), and Graclus, which have no auxil-
iary losses. As datasets, we consider TUData [38] in-
cluding Colors3 [13], GCB-H [39], and ogbg-molhiv [40].
We report the results in Table 2.
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Table 2: Mean and standard deviations of the graph classification accuracy (ROC-AUC for molhiv).

Pooler GCB-H Collab Colors3 IMDB Mutag. NCI1 RedditB DD MUTAG Enzymes Proteins molhiv

Graclus 75±3 72±3 68±1 77±6 80±2 77±2 90±3 73±4 82±12 33±7 73±4 74±3

ECPool 75±4 72±3 69±2 75±7 80±2 77±3 91±2 73±5 84±12 35±8 74±5 74±1

k-MIS 75±4 71±2 84±1 74±7 79±2 75±3 90±2 75±3 83±10 33±8 73±5 74±2

Top-k 56±5 72±2 78±1 74±5 75±3 73±2 77±2 72±5 82±10 29±7 74±5 76±1

DiffPool 51±8 70±2 65±1 72±6 78±2 75±2 90±2 75±4 81±11 36±7 75±3 70±4

MinCut 75±5 70±2 69±1 73±6 78±3 73±3 87±2 78±5 81±12 34±9 77±5 76±1

DMoN 74±3 68±2 69±2 73±6 80±2 73±3 88±2 78±5 82±11 37±7 76±4 77±1

JBGNN 75±4 72±2 68±2 75±6 80±2 78±3 90±1 79±4 87±14 39±6 75±5 73±2

BN-Pool 74±3 74±2 93±1 75±8 81±1 78±3 90±2 76±5 91±8 52±8 76±5 77±1

(a) Features X (b) Assignments S

Figure 5: Original node features and assignments S of BN-
Pool

In general, BN-Pool performs on par with the best
performing pooling operator among those in the Soft-
Clustering family. This indicates that BN-Pool can
effectively 1) find a meaningful number of clusters, and
2) aggregate nodes without sacrificing useful informa-
tion. Notable exceptions are the results obtained on
the datasets Colors-3 and Enzymes, where BN-Pool
outperforms any other pooling method by a significant
margin.
Fig. 5 shows the actual node features from a graph

from the GBC-H dataset and the node-to-supernodes
assignments according to the S found by BN-Pool. In-
terestingly, there is a very precise matching. GBC-H is a
very homophilic dataset, where the nodes can assume
only 1 of 5 possible features and nodes with the same
features are strongly connected, making it perfectly
reasonable to assign node with the same features to
the same supernode when learning the pooled graph.
Additional examples of this kind of result for the other
pooling methods, are reported in Appendix E.
The other Soft-Clustering pooling methods pool each

graph in the same predefined number of supernodes
K. Instead, BN-Pool does not require to specify K
and finds a different Ki for each graph, resulting in
a non-trivial distribution pooled graphs’ sizes. Fig. 6
shows the distributions of non-empty clusters found

0 1 2 3 4 5 6 7 8 9

GCB-H

0 1 2 3 4 5 6 7 8 9

NCI1

0 1 2 3 4 5 6 7 8 9

ENZYMES

0 1 2 3 4 5 6 7 8 9

COLORS-3

0 1 2 3 4 5 6 7 8 9

Mutagenicity

0 1 2 3 4 5 6 7 8 9

MUTAG

Figure 6: Distribution of non-empty clusters.

by BN-Pool on different datasets, which also allows us
to gain further insights about the optimal number of
pooled nodes in each dataset.

6 Conclusions

We introduced BN-Pool, a novel graph pooling method
that automatically discovers the number of supernodes
for each input graph. BN-Pool defines a SBM-like
generative process for the input adjacency matrix. By
specifying a DP prior over the cluster memberships,
our model can handle (theoretically) an infinite number
of clusters. Due to the probabilistic nature of BN-Pool,
training is performed through the variational inference
framework. We employ a GNN to approximate the
posterior of the node cluster membership, which allows
conditioning the posterior on the node (and potentially
edge) features, and on the downstream task at hand.
To the extent of our knowledge, this is the first attempt
to employ BNP techniques to define a graph pooling
method.
Experiments showed that BN-Pool can effectively find

a meaningful number of clusters, both to solve unsu-
pervised node clustering and supervised graph clas-
sification tasks. Notably, on two graph classification
datasets, it outperforms any other pooling method by a
significant margin. While we focus on the homophilic

8



setting, we believe that BN-Pool can be successfully
applied also on heterophilic setting by 1) changing the
underlying GNN that computes the posterior, and 2)
specifying a different prior for the matrix K which
reflect the heterophily in the data.
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Appendix

A Dirichlet Process

Given a continuous distribution G0, the Dirichlet Process allows to sample a distribution G with the same support as
G0. Contrarily to G0, G is discrete, meaning that the probability of two samples being equal is non-zero, but has a
countably infinite number of point masses. Formally, we write

G ∼ DP(αDP, G0), (13)
where αDP is a positive real number representing the concentration parameter, i.e., how much the mass in G is
concentrated around a given point. Fig. 7 shows an example of three different draws of G when the base distribution
G0 is a skewed Normal and the value αDP is 1,10,100, and 1000. The base distribution is the expected value of the
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Figure 7: Three single draws from the DP using as G0 a Normal skewed distribution and three different αDP values. Note that
each plot has a different scale on the y-axis.

process, i.e., the Dirichlet process draws distributions around the base distribution G0 the way a normal distribution
draws real numbers around its mean. As we can see from the example, G represents a discrete approximation of G0

The DP has a clustering property. However, such a property does not emerge from the previous formulation, which
also does not tell us how to compute G. In the following, we describe the Polya urn scheme [41] and the stick breaking
process [42]. While the former provides a good intuition of the clustering property of a DP, the latter takes a more
constructive perspective that we leverage in this work.

A.1 Polya urn scheme

The Polya urn scheme is an iterative sampling procedure that allows us to sample a sequence of i.i.d. random variables
θ1, θ2, . . . that are distributed according to G ∼ DP (αDP, G0). That is, the variables θ1, θ2, . . . are conditionally
independent given G and, hence, exchangeable.
Let us consider the conditional distributions of θi given the previous θ1, . . . , θi−1, where G has been integrated out.

We can interpret this conditional distribution as a simple urn model containing balls with distinct colors. The balls
are drawn equiprobably and when a ball is drawn it is placed back in the urn together with another ball of the same
color. In addition, with a probability proportional to αDP, each time we add in the urn a ball with a new color drawn
from G0. This model exhibits a positive reinforcement effect: the more a color is drawn, the more likely it is to be
drawn again.
Let ϕ1, . . . , ϕK be the distinct atoms drawn from G0 (i.e., the colors) that can be assumed by θ1, . . . , θi−1 (i.e., the

balls), and let mk be the number of times the atom ϕk appears in {θ1, . . . , θi−1} for 1 ≤ k < i. Formally, we can
express the sampling procedure as:

θi | θ1, . . . , θi−1 =

{
ϕk with probability mk

i−1+αDP

a new draw from G0 with probability αDP
i−1+αDP

(14)

Equivalently, we can write:

θi | θ1, . . . , θi−1 ∼
K∑

k=1

mk

i− 1 + αDP
δϕk

+
1

i− 1 + αDP
G0, (15)

where, δϕk
is a probability measure concentrated at ϕk, i.e., δϕk

is a degenerate function assuming value +∞ at ϕk

and 0 everywhere else.

12



𝑘 = 1
𝜋11 − 𝜋1

𝑘 = 2
𝜋11 − 𝜋1 − 𝜋2 𝜋2

𝑘 = 3
𝜋11 − 𝜋1 − 𝜋2 − 𝜋3 𝜋2𝜋3

⋮ ⋮ ⋮ ⋮

Figure 8: Graphical representation of the stick-breaking process.

Referring to Fig. 7, the values mk are proportional to the heights of the grey bars. When αDP is small, most of the
probability mass is concentrated in a few points. While the Polya urn scheme helps to understand the clustering
property of DP, the sampling procedure does not provide an analytic expression of G that we can exploit in our
model.

A.2 Stick-breaking Process

The idea of the Stick Breaking Process (SBP) is to repeatedly break off a “stick” of initial length 1. Each time we need
to break the stick, we choose a value between 0 and 1 that determines the fraction we take from the remainder of the
stick. In Figure 8 we show the iterative breaking process, where the values of π1, π2, π3, . . . represent the parts of the
stick pieces broken in the first three iterations.
Formally, the stick-breaking construction is based on independent sequences of i.i.d. random variables (π′

k)
∞
k=1:

π′
k | αDP ∼ Beta(1, αDP) πk = π′

k

k−1∏
l=1

(1− π′
l), (16)

where the value of π′
k indicates the proportion of the remaining stick that we break at iteration k. To understand

the stick analogy, we should first convince ourselves that the quantity
∏k−1

l=1 (1 − π′
l) is equal to the length of the

reminder of the stick 1−
∑k−1

l=1 πl after breaking it k − 1 times. Thus, the length of the stick’s piece πk is obtained by
multiplying the stick fraction π′

k by the length of the remaining stick
∏k−1

l=1 (1− π′
l).

It is important to note that the sequence π = (πk)
∞
k=1 constructed by equation 16 satisfies

∑∞
k=1 πk = 1 with

probability one. Thus we may interpret π as a random probability measure on the positive integers. This distribution
is often denoted as GEM, which stands for Griffiths, Engen and McCloskey (e.g. see [43]).
Now we have all the ingredients to define a random measure G ∼ DP(αDP, H):

ϕk | G0 ∼ G0 G =

∞∑
k=1

πkδϕk
, (17)

where (ϕk)
∞
k=1 are the atoms drawn from G0 and δϕk

is a probability measure concentrated at ϕk. Sethuraman
showed that G as defined in equation 17 is a random probability measure distributed according to DP(αDP, G0). The
stick-breaking process is related to the urn scheme since the length of each piece πk corresponds to the expected
probability of drawing a ball of color ϕk.

B Implementation details

In this section, we show how we implement the key operations in our model by using as backend the PyTorch library.

B.1 Priors and Posteriors Definition

Listing 1 shows how we define the prior and the variational parameters. In particular, the hyperparameters
representing the priors are defined as buffers since they are not optimised during the training. Conversely, the
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variational parameters are defined as parameters since they are optimised during the training. The variational
parameters α̃, β̃ are not defined explicitly since we compute them by applying the linear module W to the node
embeddings of size emb_size generated by a GNN. The value of n_clusters indicates the maximum number of
clusters we consider (i.e., the truncation level C of the posterior approximation), and k_init is the value used to
initialise the variational parameter µ̃ (i.e., ηK in the main text).
import torch.nn.functional as F
import torch as th

# --- Priors (hyperparameters) ---
# Prior for the Stick Breaking Process
register_buffer(’alpha_DP’, th.ones(n_clusters - 1) * alpha_DP)

# Prior for the cluster-cluster prob. matrix
register_buffer(’sigma_K’, th.tensor(sigma_K))
register_buffer(’mu_K’, mu_K * th.eye(n_clusters , n_clusters) -

mu_K * (1-th.eye(n_clusters , n_clusters)))

# --- Posteriors (parameters) ---
# Transforms node embeddings into posterior distributions for the sticks (alpha_tilde and

beta_tilde)
W = th.nn.Linear(emb_size, 2*(n_clusters -1), bias=False)

# variational parameters for the connectivity matrix K
mu_tilde = th.nn.Parameter(k_init * th.eye(n_clusters , n_clusters) -

k_init * (1-th.eye(n_clusters , n_clusters)))

Listing 1: Priors hyperparameters and trainable parameters definition.

B.2 Cluster Assignments Computation

Listing 2 shows the key operations in the forward pass of our model: given the node embeddings produced by a
GNN, we compute the cluster assignment matrix S. The forward pass also computes the variational distributions qπ
which will be useful later to compute the losses.
def compute_pi_given_sticks(stick_fractions):

’’’
Compute the sticks length given the stick fractions
’’’
log_v = th.concat([th.log(stick_fractions), th.zeros(*stick_fractions.shape[:-1], 1)],
dim=-1)
log_one_minus_v = th.concat([th.zeros(*stick_fractions.shape[:-1], 1),

th.log(1 - stick_fractions)], dim=-1)
pi = th.exp(log_v + th.cumsum(log_one_minus_v , dim=-1))
return pi # has shape: [T, batch, N, C]

def get_S(node_embs , n_particles , n_clusters):
’’’
Compute soft cluster assignments.
’’’
out = th.clamp(F.softplus(W(node_embs)), min=1e-3, max=1e3)
alpha_tilde , beta_tilde = th.split(out, n_clusters -1, dim=-1)
q_pi = th.distributions.Beta(alpha_tilde , beta_tilde)
stick_fractions = q_z.rsample([n_particles])
S = compute_pi_given_sticks(stick_fractions)
return S, q_pi

Listing 2: Forward computation of the cluster assignments.

At first, on lines 15-16, we obtain the variational parameters α̃, β̃ by applying the linear module W to the node
embeddings produced by the GNN. Note that both variational parameters should be greater than 0; thus, we apply
the softplus activation function. Moreover, to avoid numerical errors, we clamp the values between 10−3 and 103.
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Once we have the variational parameters, we define the variational distribution by employing the PyTorch class
torch.distributions.Beta. Then, we sample n_particles (i.e., T in the main text) values that will be used
to approximate the reconstruction loss by using the rsample method. The r in the rsample name stands for
reparametrization, that is the trick which allows to separates the distribution parameters from the randomness by
allowing to back-propagate the gradient from the samples to the distribution parameters. This technique is also
denoted as pathwise gradient estimator. As we mentioned in Section 3.1, the reparametrization trick cannot be applied
to the Beta distribution explicitly. Therefore, we rely on an approximation of the pathwise derivate [29, 30] which
does not require to reparametrise the Beta distribution explicitly. This approximation is already implemented in the
Pytorch framework: when we call the rsample method, the backend computes (if it is possible) or approximates
(as in our case) the pathwise derivative. Thus, the gradient flows from the reconstruction loss to the variational
parameters α̃, β̃, and then to the GNN paramters Θ.
The function compute_pi_given_sticks computes the stick length π1, . . . , πC given the stick fractions π′

1, . . . , π
′
C

by applying equation 16. The computation is performed in the log-space to avoid numerical errors.

B.3 Losses Computation

Listing 3 shows the computation of the losses Lrec,Lπ,LK .
def rec_loss(S, A):

# Compute the percentage of non-zero links
# N is the number of nodes
# E is the number of edges
balance_weights = (N*N / E) * adj + (N*N / (N*N -E)) * (1 - adj)

# compute the probability to have and edge for each node pairs, i.e. S K S^T
p_adj = S @ self.mu_tilde @ S.transpose(-1,-2)

loss = F.binary_cross_entropy_with_logits(p_adj, A, weight=balance_weights , reduction=’
none’)

return loss

def pi_prior_loss(self, q_pi):
alpha_DP = self.get_buffer(’alpha_DP’)
p_pi = Beta(th.ones_like(alpha_DP), alpha_DP)
loss = kl_divergence(q_pi, p_pi).sum(-1)
return loss

def K_prior_loss(self):
mu_K, sigma_K = self.get_buffer(’mu_K’), self.get_buffer(’sigma_K’)
K_prior_loss = (0.5 * (self.mu_tilde - mu_K) ** 2 / sigma_K).sum()
return K_prior_loss

Listing 3: Losses computation.

The function rec_loss compute the reconstruction loss Lrec. As shown in equation 11, the value of the loss
corresponds to the Binary Cross-Entropy (BCE) loss computed between the adjacency matrix A and the probability
to have an edge for each node pairs. Note that we use BCE_with_logits rather than applying the sigmoid function to
each π⊤

u µ̃πv. Since the number of edges is usually much less than the total number of possible edges, we assign
different weights to the positive and negative classes to achieve balancing. The weights for the positive class are
computed in line 10 and stored in the variable balance_weights.
The loss Lπ is equal to the KL divergence between the prior p(π′

ui) and the variational posterior q(π′
ui) for each

node u and a cluster i. Since all the distributions involved are Beta distributions, the KL divergence has a closed form
and it is already implemented in PyTorch. This loss is computed by the function pi_prior_loss.
The last loss LK is equal to the KL divergence between normal distributions since q(Kij) and p(Kij) are Gaussians

for all clusters i and j. Since we do not optimise the variance of the variational distribution, we can ignore all the
terms that do not involve the variational parameters µ̃. Thus, we compute LK as the means squared error between µ̃
and µK scaled by the variance prior σK . This loss is computed by the function K_prior_loss.
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C Model details

We consider the configurations of the hyperparameters of BN-Pool specified in Table 3. As discussed in Section 3.2,
the value of each parameter can be set according to the characteristics of the dataset at hand or by monitoring some
performance metrics while training. In our experiments, we select the configuration that yields the lowest value of
the reconstruction loss Lrec in the node clustering task and the highest validation accuracy in the graph classification.

Table 3: Values of the hyperparameters of BN-Pool considered.

Hyperparameter Values

αDP 1.0, 10.0
µK 1.0, 10.0, 30.0
σK 0.1, 1.0

We found that setting αDP = 10.0, µK = 1.0, and σK = 1.0 yields generally good performance and, thus, it represents
our default configuration. Regarding the other hyperparameters, we kept the truncation level C = 50, the number of
particles T = 1, and the initialization of the variational parameter ηK = 1.0 fixed in all experiments.

C.1 Node clustering

The architecture used for clustering is depicted in Fig. 9. As MP layers we used two Graph Convolutional Network
(GCN) layers [44] with 32 hidden units and ELU activations [45].
Before training, we apply to the adjacency matrix the same pre-transform used in JBGNN:

A → I − δ ∗L, (18)
where L is the symmetrically normalized graph Laplacian and δ is a constant that we set to 0.85 as in [37].
As training algorithm we used Adam [46] with initial learning rate 1e− 3. For BN-Pool, we increased η defined in

Eq. 10 from 0 to 1 over the first 5, 000 epochs according to a cosine scheduler.

Figure 9: Architecture used for node clustering task.

During training, we monitored the auxiliary losses for early stopping with patience 1, 000. When the GNN was
configured with BN-Pool, we monitored only Lrec since LK and Lπ are regularization losses that usually increase
and might dominate the total loss.

C.2 Graph classification

The architecture used for graph classification is depicted in Fig. 10. Before and after pooling we use a Graph
Isomorphism Network (GIN) [47] layer with 32 hidden units and ELU activations. The readout is an Multilayer
Perceptron (MLP) with [32× 32× 16×Nclass] units, dropout 0.5, and ELU activation.
Also in this case we apply the pre-transform in Eq. 18. Since some of the datasets contain edge features, we assign to

the self-loops that we introduce zero-vectors as surrogate features.
While BN-Pool is able to autonomously discover the number of nodes Ki of each pooled graph, we need to specify

the size of the pooled graphs K for the other Soft-Clustering pooling methods and the pooling ratio κ for the
Score-Based methods. Therefore, for every dataset, we set κ = 0.5 and K = 0.5N̄ , where N̄ represents the average
nodes in a given dataset.
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Figure 10: Architecture for graph classification.

As optimizer we used Adam with initial learning rate 5e− 4. Regarding the callbacks, we monitored the validation
accuracy and lowered the learning rate by a factor 0.8 after a plateau of 200 epochs and performed early stopping
after 500 epochs. For BN-Pool, we increase η from 0 to 1 over the first 300 epochs using a cosine scheduler.

D Datasets details

The details of the datasets used in the node clustering task are reported in Tab. 4. We reported also the intra-class
and inter-class density, which is the average number of edges between nodes that belong to the same or to different
classes, respectively. The Community dataset is generated using the PyGSP library4. The other datasets are obtained
with the PyG loaders5.

Table 4: Details of the vertex clustering datasets.

Dataset #Vertices #Edges #Vertex attr. #Vertex classes Intra-class density Inter-class density

Community 400 5,904 2 5 0.1737 0.0025
Cora 2,708 10,556 1,433 7 0.0065 0.0004
Citeseer 3,327 9,104 3,703 6 0.0034 0.0003
Pubmed 19,717 88,648 500 3 0.0005 0.0001
DBLP 17,716 105,734 1,639 4 0.0008 0.0001

Table 5: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vertices Avg. #edges Vertex attr. Vertex labels Edge attr.

GCB-H 1,800 3 148.32 572.32 – yes –
Collab 5,000 3 74.49 4,914.43 – no –
Colors3 10,500 11 61.31 91.03 4 no –
IMDB 1,000 2 19.77 96.53 – no –
Mutag. 4,337 2 30.32 61.54 – yes –
NCI1 4,110 2 29.87 64.60 – yes –
RedditB 2000 2 429.63 497.75 – no –
D&D 1,178 2 284.32 1,431.32 – yes –
MUTAG 188 2 17.93 19.79 – yes –
Proteins 1,113 2 39.06 72.82 1 yes –
Enzymes 600 6 32.63 62.14 18 yes –
molhiv 41,127 2 25.5 27.5 9 no 3

The details of the datasets used in the graph classification task are reported in Tab. 5. All datasets besides GCB-H
and molhiv are downloaded from the TUDataset repository6 using the PyG loader. For the GCB-H we used the

4https://pygsp.readthedocs.io/en/stable/
5https://pytorch-geometric.readthedocs.io/en/2.6.0/modules/datasets.html
6https://chrsmrrs.github.io/datasets/
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data loader provided in the original repository7. Finally molhiv is obtained from the OGB repository8 through the
loader from the ogb library9. For molhiv, we preprocessed the node and edge features using the AtomEncoder and
BondEncoder from the ogb library using default embedding dimension size 100.

E Additional results

(a) BN-Pool (b) MinCut

Figure 11: Cluster assignments S found on Cora.

Figure 11a shows the cluster assignments S found by BN-Pool on Cora split according to the node classes. We see
that there is not a direct correspondence between the classes and the clusters, since each class is assigned to multiple
clusters. This is expected when we do not fix the number of clusters equal to the number of classes, like in the case
of BN-Pool that, potentially, can activate an infinite number of clusters. We also notice that the same clusters are
active across different classes, albeit with different membership values. Despite such an overlap, there is a clear and
consistent pattern in terms of cluster memberships for each class. It is important to notice that the membership values
are lower for the nodes of class 3, which is the most populated in the graph. As discussed in Section 5.1, activating
many clusters with low membership values is a natural solution found by BN-Pool to reduce Lrec when the intra-class
density is very low, like in Cora (0.006).
The clusters found by MinCut on Cora are very different, as shown in Figure 11b. MinCut relies on supervision

to set the number of clusters equal to number of class labels. While this allows to achieve a good correspondence
between the classes and the clusters, it limits the extent to which MinCut can split a class into multiple clusters,
encoding nodes of the same class differently. This implies that if there is a significant variability within each class,
MinCut might only assign some of its nodes in the right cluster.
Figure 12 extends Figure 5 from the main body by showing how other pooling methods group the nodes on a

sample graph from the GCB-H dataset. BN-Pool creates clusters that match the node features well (Fig. 12b). By
contrast, MinCut, which is also a Soft-Clustering method, places nodes with different features in the same clusters
(Fig. 12c). In particular, MinCut finds 4 clusters even though there are 5 different feature values.
On the other hand, Top-k and k-MIS come from different families (Score-Based and One-Over-K) and pool the

graph in a very different way. In particular, Top-k (Fig. 12d) keeps only half of the nodes and drops the others, shown
in black. k-MIS does not use the node features, so there is no direct match between the features and the clusters
it finds. Figures 12f-i show the different assignment matrices S from these methods, and Figures 12j-m show the
topology and node features of the pooled graphs.
BN-Pool uses only 5 clusters that match the 5 feature values. As a result, the pooled graph summarizes effectively

the original, with just 5 supernodes, each one tied to a certain feature. On the other hand, MinCut produces a denser
7https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
8https://ogb.stanford.edu/docs/graphprop/
9https://github.com/snap-stanford/ogb
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(a) Original

(b) BN-Pool assignments (c) MinCut assignments (d) Top-k scores (e) k-MIS assignments
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Figure 12: Example from GCB-H.
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assignment matrix S, where each node belongs to multiple supernodes, and several supernodes have the same role.
This overlap is also visible in the pooled graph, which has many supernodes with similar features. Unlike BN-Pool,
this pooled graph is less compact, is very dense, and, thus, more costly to process.

Looking at Top-k, we see that its pooled graph is simply a subset of the original, which means some parts of the
graph are left out. This is known to be a potential issue in Score-Based methods as it affects their expressivity [48].
Finally, k-MIS yields a pooled graph that, like BN-Pool, is both small and very sparse. It represents all parts of the
graph, but it does not match its supernodes to the node features, since it does not consider them.
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